
Experiments on SDN-based Network and Cloud
Resource Orchestration in FED4FIRE

M. Gharbaoui∗, B. Martini†, D. Adami†, P. Castoldi∗, S. Giordano‡
∗Scuola Superiore Sant’Anna, Pisa, Italy

†CNIT, Pisa, Italy
‡University of Pisa, Italy

Abstract—This paper presents the experimental evaluation
of an SDN-based orchestration system enabling the automated
and coordinated arrangement of both computing and network
resources in cloud Data Centers. The testbed has been set-up
in the Fed4FIRE virtual experimental environment that allows
for extensive, large-scale and cross-functional tests to be carried
out. Results show that the selection of servers and paths that are
driven by the estimated trends in their usage allows for resources
to be better exploited at the cost of a limited risk of degradations.

Index Terms—SDN, cloud computing, data center, orchestra-
tion, Fed4Fire.

I. INTRODUCTION

In the last years, cloud computing gained increasing pop-

ularity in the Information Technology (IT) field as an ”on-

demand” service provisioning model for storage and com-

putational resources or even applications [1]. Data Centers

(DCs) are the primary infrastructures for the delivery of cloud

computing services, where advanced software virtualization

techniques (e.g., Hypervisor) enable agile Virtual Machine

(VM) operations (start-up, cloning, migrations) resulting in

high dynamicity of Cloud DC traffic flows. Definitely, for

efficient operations, Cloud DCs require elastic and agile net-

work control functions, coordinated (i.e., orchestrated) with

computing resource control, in order to guarantee both proper

VM operations and traffic performance [2].

In such a context, the Software Defined Networking (SDN)

paradigm, being able to cope with the aforementioned chal-

lenges, is driving prominent innovations in DC networks.

Indeed, SDN uses a centralized and highly programmable

model as a result of the separation of the control plane from

the hardware-based data plane, thus allowing for more gran-

ular and automated network control. Moreover, the controller

exposes Northbound Interface (NB-I) that can be exploited

for a straightforward interaction with application service de-

livery platforms (i.e., cloud management platforms) aiming at

coordinating service deployments with the establishment of

data delivery paths while following rapid cloud dynamics [3].

Finally, the rich set of statistics offered by the OpenFlow

(OF) protocol at both per-port and per-flow level, allows for

a substantial network status information to be collected and

elaborated thereby (re-)directing provisioning and recovery

actions, accordingly [4].

In this work, we present the experimental evaluation and

performance analysis of an SDN-based orchestration system

(i.e., SDN-DC orchestrator) that enables an automated and

coordinated provisioning and management of both comput-

ing and network resources in cloud DCs. By providing an

abstraction of computing and network resources as well as

composition and selection functions, the SDN-DC orchestrator

allows for DC administrator to deploy innovative management

applications. For example, with reference to IasS, and focusing

on the VMs provisioning service, the orchestrator enables

the dynamic placement of VMs on physical servers using

heuristics that attempt to satisfy their processing, storage and

communication requirements against the current status (e.g.,

load) of DC resources while assuring better than best effort

VM data delivery. The SDN-DC orchestrator has been de-

signed, developed and preliminary tested in the framework of

EU PF7 OFELIA project [5]. In the design phase, we proposed

several heuristics for the coordinate selection of computational

and network resources [6] [7]. Since reproducing a real Cloud

DC would require a very large number of physical devices and

a great effort in the initial and subsequent deployment phases,

we set-up a small-scale testbed to carry out functional tests

only [8]. Similarly, we used a Java-based simulator to evaluate

the performance of heuristics on a large-scale basis, without

the possibility to assess other orchestration capabilities (e.g.,

actual evaluation of server and link utilization). As far as our

knowledge, there are no other work in the literature related to

the experimental evaluation of an SDN-based orchestrator for

Cloud DCs.

The goal and motivation of this work lie in extending our

previous activities by assessing the performance of the SDN-

DC orchestrator in a virtual testbed environment, called Virtual

Wall, supported by Fed4FIRE [9] [10]. Funded by the EU

in the FP7 topic ”Future Internet Research and Experimen-

tation”, Fed4FIRE establishes a heterogeneous, scalable and

federated experimental framework for researchers in which

a large number of European facilities are integrated. Using

a virtual testbed including slices of computing and network

capabilities, it is possible to overcome the limitations of both

physical testbeds and simulators. Indeed, virtual environments

are flexible, easily and quickly reconfigurable, and allow

the deployment of medium or large size testbeds. Moreover,

unlike simulators, virtual testbeds can be built using the same

software modules as real testbeds, thus enabling the validation978-1-4673-9486-4/16/$31.00 c© 2016 IEEE

of all components and functions.

II. SDN-BASED RESOURCE ORCHESTRATION

In this section, we describe the architectural components

and their interactions of the SDN-DC orchestrator realizing the

coordinated and adaptive arrangement of both computing and

network resources. In Cloud DCs, those set of resources are

provided by a pool of servers interconnected through switches

and links, arranged in a typical tree-like 3-layer network

topology.

Fig. 1. Design of the SDN-DC orchestrator operating over a DC topology

The SDN-DC orchestrator basically consists in an OF

controller enhanced with cloud management capabilities to

deliver composite cloud-network services while addressing

both computational and communication requirements. The

Web-based Front-End block collects service requests (i.e.,

VM set-up request) from users and forwards them to the

VM Request Handler. The VM Request Handler extracts

the requirements for the requested VM (i.e., computational

power and bandwidth) and triggers the Resource Selection

and Composition Engine for selecting a proper server and data

delivery path throughout DC switches, thus guaranteeing both

set of requirements. In case a server or a path, able to meet

the request requirements, is not found, the service request is

rejected. The selection of servers and paths is made taking

into account the traffic load of interconnection links (i.e.,

packet forwarding capability available at switch ports serving

the interconnection links) and the processing load of servers

(i.e., computational power available at server CPU). To this

purpose, statistics are periodically collected by the Statistic

Handler for the switches/links and by the VMM Handler for

the servers and then stored in the Network Statistics Database

(DB) and Server Statistics DB, respectively. Moreover, up-to-

date topological information concerning links, switches and

servers status are retrieved by the Topology Discovery block

by leveraging services for network discovery and host tracking

and then stored in the Network Topology DB. Once the server

and the DC switches have been selected, the VMM Handler

is triggered to actually deploy the VM in the selected server

whereas the OF Rules Handler is used to accordingly update

the Flow Table of the selected switches thus enforcing the

selected delivery path. A DHCP server is deployed to assign an

IP address to the VM upon its creation. A detailed description

of the SDN-DC orchestrator can be found in [6] [11].

In this work the selection and composition of both resources

is carried out using different kinds of algorithm, that leverage

estimations about the load of servers and links/switches that

are derived from collected data statistics. In the following, the

estimation process and the heuristics are detailed.

As for the link/switch load estimations, the Statistics Han-

dler firstly calculates the average traffic rate, i.e., data through-

put, at each interface while transmitting and receiving data.

Specifically, the traffic rate is obtained by collecting two

consecutive counter values for transmitted and received bytes

(i.e., Tx Bytes or Rx Bytes) at ti−1 and ti, from the switch

s at the interface connected to the link l. Then, the average

input and output rates at l in the time interval (ti − ti−1) are

computed as follows:

Traffic Rate Ini(l) =
Rx Bytes(l, ti) − Rx Bytes(l, ti−1)

(ti − ti−1)
i = 1, 2, ...n

(1)

Traffic Rate Outi(l) =
Tx Bytes(l, ti) − Tx Bytes(l, ti−1)

(ti − ti−1)
i = 1, 2, ...n

(2)

Due to the high variability of traffic patterns, current values

of traffic rates are also highly variable over time. In order

to obtain consolidated data on trends of resource utilization

over time, the instantaneous value of the traffic rates should

be correlated with historical values sampled over time. To this

purpose, the estimated traffic load at the interface connected to

the link l, with bandwidth B, in each direction (i.e., In and Out

with respect to the switch interface) is computed as follows:

Estimated Link Load Outi(l) =

(1 − α)Traffic Rate Outi(l) + α
∑i−1

k=i−M

Traffic Rate Outk(l)

M

B

(3)

Estimated Link Load Ini(l) =

(1 − α)Traffic Rate Ini(l) + α
∑i−1

k=i−M

Traffic Rate Ink(l)

M

B

(4)

where α is the history weight, a parameter that allows to

assign a weight to the average of the past M samples (collected

at time i − 1 down to i − M) against the newest one (at

time i) with samples collected every T seconds. The balancing

between the instantaneous and historical values is fundamental

to obtain a reliable load estimation.

As for selection and composition strategies, we conceived

four different on-line Resource Selection and Composition

algorithms to be adopted upon the arrival of a VM set-up

request. They can be classified in two categories, based on

the order used to select computational and communication

resources:

• Server-Driven (SD): first attempts to find a server

and then the delivery path throughout a sequence of

switches/links.

• Network-Driven (ND): first attempts to find a delivery

path and then a server where to deploy the VM.

A case of selection is described for each algorithm category

in the DC example topology shown in the bottom of the Fig. 1,

i.e., SD case on the left, ND case on the right. The fat-tree

topology represents a multi-rooted tree which offers the pos-

sibility of taking advantage of several paths from the servers

to the core switches. Without lack of generality, we show in

the bottom of Fig. 1 the selection of a path that connects

a server to the core switch, throughout the aggregation and

edge switches, i.e., North-South delivery path. At each step

of the switches/links selection, and for the selection of the

server, two bin-packing heuristics have been considered, i.e.,

the First Fit (FF) policy and the Worst Fit (WF) policy. The

FF policy allocates the VM (traffic load) in the first available

server (switch), where the resources are ordered according to

an identifier. On the contrary, the WF policy searches for

the most unloaded server (switch) to allocate the requested

VM (traffic load) where the largest free space is available. If

not enough availability exists at server (switch) the request

is blocked. Further details about the algorithms can be found

in [6].

III. FED4FIRE SET-UP FOR EXPERIMENTS

The Fed4Fire platform offers a set of tools that allow

to reserve resources, get access to them and then configure

them, in order to run the experiments. In particular, the JFed

framework [12] is the graphical interface that makes it easy for

the experimenters to check the availability of the resources in

the different testbeds and to reserve them. As shown in Fig. 2,

in our experiments we used nodes exclusively from the iMinds

testbed (Virtual Wall 2) which is an emulation environment

hosting 159 physical nodes that might be used directly as bare

metal hardware or might be virtualized [10]. We created two

independent slices, i.e., virtual experiment containers: one in-

cluding our SDN-based controller (one physical node) and one

including the fat-tree topology representing the DC and one

outside host that emulates a sink for the traffic generated from

the VMs. The fat-tree topology is composed of 20 OVS [13]

switches that communicate with the controller through the

OpenFlow protocol. Moreover, on the 16 hosts we installed

the Xen Cloud Platform (XCP) [14], which is a virtualization

solution including the XEN API tool stack responsible for the

VMs lifecycle (clone, run, shutdown, remove). Once a VM

is created, we generate a variable bit rate (VBR) traffic from

the outside host to each VM using iperf in order to load the

DC network and assess the effectiveness of the SDN-based

orchestration process.

During the experiments, we apply the selection and com-

position algorithms described in Section. II, i.e., SD-FF, SD-

WF, ND-FF and ND-WF. The statistics from the switches are

collected every 35 seconds, whereas the estimation scheme

is carried out using an history weight α equal to 0.2 and a

monitoring window M including 6 samples. Such algorithms

and the estimation mechanism are defined as two possible

schemes for carrying out the orchestration process, and are

used in the experiments for assessing the SDN-DC orchestrator

and for demonstrating improvements with respect to current

practices in DCs where the selection of paths are not engi-

neered because static approaches for routing are used, e.g.,

Equal-Cost Multi-Path (ECMP), that eventually underutilizes

the network links [15]. For this reason, we use as a baseline

the case of a random selection of the server and the application

of the spanning tree algorithm to forward the VM traffic that

finally does not use the over redundant links [16]. It is worth

pointing out that, for a sake of fairness in the comparison

with orchestration algorithms, the estimation of the load on

network links is maintained to decide for the admission of

VM allocations in the baseline.

SDN-DC

Orchestrator

Fig. 2. Experiment components in the Fed4Fire testbed infrastructure

The VM allocation requests are generated according to a

Poisson distribution characterized by inter-arrival and holding

times exponentially distributed with an average of 1/λ and

1/µ, respectively. 1/λ varies within the range [80sec, 200sec]
whereas 1/µ is fixed to 10.000 seconds. In such configura-

tion the network is relatively loaded which might cause the

rejection of some requests. For the traffic we have considered

a script that generates a variable traffic from the allocated

VM towards the gateway following the selected path. For the

requests characteristics, the computational power is uniformly

distributed within the interval [2, 4] whereas the bandwidth

is uniformly distributed within the range [60Mb/s, 80Mb/s],
the storage capacity is equal to 1GB and the requested RAM

is also equal to 1GB. Regarding the characteristics of the

topology, the initial computational power of the servers is fixed

to 20 CPU whereas the links capacity is fixed to 80 Mb/s.

�

��

��

��

��

��

��

��

	�

�

���

� ��� ��� ��� ���

�
�
��
�
�
��
�
�
	

�	
�
��

�
�
	�
�
��
�
��
	�
�
�

����������	�
�

��
�� ��
�� ��
�� ��
�� ��������

Fig. 3. Number of used servers in time

�

���

���

���

���

�

� �� �� �� �� ���

�
�
�

����������	
�	�
��	
����	���������
�

�	
�� �	
��
	
��
	
�� ��������

Fig. 4. CDF of core links utilization

�

��

��

��

��

��

��

��

	
��� 	
�
� �
��� �
�
� ��������

�
�
�
��
�
�
��
	

��

�
�

��
�
�

���������	
����

�	
�����

����� �����

����� �����

Fig. 5. DI a function of the core switch

�

�

��

��

��

��

��

� ��� ��� ��� ��	 �

�
�
�
��
�
�
��
	

��

�
�

��
�
�

�

��

���

Fig. 6. Effect of α on DI

IV. PERFORMANCE EVALUATION

This section describes some experimental results we

achieved during the tests. Fig. 3 plots the percentage of active

servers over time as an index of computational resources

utilization. Results show that the orchestration process (i.e.,

selection of the server and of the path according to the

estimated load) allows for an increased utilization of servers.

Indeed, in the baseline less servers are active (i.e., 4 during

all the experiment). This is mainly due to the saturation of

the aggregation and core links as result of the spanning tree

algorithm that avoids using a number of links (redundant

ones). The saturation of aggregation and core links cause them

to be able to practically handle the traffic generated by only

one server in each pod. Among the orchestration algorithms,

as expected the FF policy minimizes the percentage of active

servers, independently from the adopted algorithm, either SD

or ND. In fact, FF policy tries to place all the allocated VMs in

the same server, and selects another server only if the current

one is full and the resources are unavailable (CPU on the

server or bandwidth on the selected path). On the other hand,

we can observe that the WF policy utilizes all the servers

which has the advantage of balancing the load between the

available resources. Fig. 4 illustrates the CDF of the core

links utilization for the different algorithms compared with the

baseline. The CDF for the baseline shows that the core links

are much more saturated than in the orchestration algorithm

(30% of the core links are utilized at more than 50% of their

capacities against only 10% in the best orchestration case)

which is due to the exploitation of a lower number of core

links in the spanning tree topology under the same load. As

expected, the ND-WF and SD-WF algorithms present the best

results since they tend to minimize the percentage of empty

core links. ND-FF and SD-FF present almost the same results

with a high percentage of links utilized under 5%. However,

the FF policy tends to saturate more the core links which is

confirmed by a 10% more of links utilized at more than 50%
with respect to the WF policy.

While resource utilization is better in the orchestration case,

this could come at the risk of a degraded data delivery due

to possible estimation errors as result of variability of overall

traffic. For this reason, we evaluate the Degradation Index (DI)

defined as the percentage of time at least one link is saturated

(as observed by monitoring and estimation system), which

introduces some delay in the delivery of the packets. In Fig. 5

we plot DI considering only the core links that we regroup by

core switch. Results show that the ND-FF algorithm presents

the worst degradation performance. In fact, 2 core switches out

of 4 present a degradation index higher than 40%. Moreover,

an important difference is noticed between the 4 core switches

where core switch 1 presents a DI higher than 60% while DI is

lower than 5% in core 4. This trend supports the idea that this

algorithm saturates a part of the topology while it keeps the

other part almost empty. In the other algorithms, DI is almost

equivalent in all the core switches. In SD-WF and ND-WF

this is due to their load balancing characteristic. In the SD-FF

case, DI is slightly higher (around 5%). In fact, SD-FF selects

first the server which also implies the selection of the edge

switch, following a consolidation trend that is then attenuated

at the aggregation and core level due to multiple choices of

links and to the dynamicity of traffic. This results in a non

significant difference between the core switches, although a

DI that remains slightly higher for core1.

Fig. 6 plots DI as a function of α. Due to space constraints

we limit the results to the SD-FF and SD-WF heuristics. We

notice that by increasing α DI significantly decreases, thus

improving the performance of the running virtual machines.

In fact, higher values of α represent the case where the traffic

variations are attenuated and the estimated traffic corresponds

to the sum of average traffic loads of the historical samples.

Once a request arrives, the status of the network is stable

and the allocation of a new VM does not deteriorate the

performance. Moreover, DI is lower in the SD-WF case which

is the result of its load balancing characteristic that prevents

from saturating the links.

V. CONCLUSION

This paper has presented the experimental evaluation of

an SDN-based orchestration system enabling the automated

and coordinated arrangement of both computing and network

resources in cloud DC environments. The testbed has been

set-up in the Fed4FIRE virtual experimental environment that

allows for large-scale and cross-functional tests to be carried

out. Results shows that the selection of servers and paths that

are driven by the estimated trends in their usage allows for

the resources to be better exploited at the cost of possible

degradations. The comparison among orchestration strategies

highlights that the spreading of selections and the proper

settings of the monitoring parameters allows for limiting the

risk of degradations at less than 10%.

ACKNOWLEDGMENT

This work was funded in part by the Scuola Superiore

Sant’Anna on the NET-DRIVE project and supported by

the EVIDENCE project approved within the 2 Call of the

FED4FIRE project (n. 318389).

REFERENCES

[1] C. Hofer et al., “Cloud computing services: taxonomy and comparison,”
Journal of Internet Services and Applications, Springer, vol. 2, no. 2,
pp. 69–79, 2011.

[2] Y. Zhang et al., “Evaluating the impact of data center network architec-
tures on application performance in virtualized environments,” in Quality

of Service (IWQoS), 2010 18th International Workshop on, June 2010,
pp. 1–5.

[3] C. Chappel, “Unlocking network value: Service innovation in the era of
SDN,” HeavyReading, White paper, June 2013.

[4] A. Lara et al., “Network Innovation using OpenFlow: A Survey,” IEEE

Communications Surveys and Tutorials, vol. 16, 2014.
[5] B. Martini, D. Adami, A. Sgambelluri, M. Gharbaoui, L. Donatini,

S. Giordano, and P. Castoldi, “An SDN orchestrator for resources
chaining in cloud data centers,” in European Conference on Networks

and Communications (EuCNC), 2014.
[6] D. Adami, B. Martini, M. Gharbaoui, P. Castoldi, G. Antichi, and

S. Giordano, “Effective resource control strategies using openflow in
cloud data center,” in IFIP/IEEE International Sympsium on Integrated

Network Management (IM2013), 2013.
[7] M. Gharbaoui, B. Martini, D. Adami, G. Antichi, S. Giordano, and

P. Castoldi, “On virtualization-aware traffic engineering in OpenFlow
Data Centers networks,” in IEEE Network Operations and Management

Symposium (NOMS), 2014.
[8] D. Adami, B. Martini, A. Sgambelluri, M. Gharbaoui, P. Castoldi,

A. Del Chiaro, L. Donatini, and S. Giordano, “An OpenFlow controller
for cloud data centers: Experimental setup and validation,” in IEEE

International Conference on Communications (ICC), 2014.
[9] http://www.fed4fire.eu/.

[10] http://ilabt.iminds.be/iminds-virtualwall-overview.
[11] “EMOTICON requirements and architecture design,” OFELIA Deliver-

able D13.1, http://www.fp7-ofelia.eu/.
[12] http://jfed.iminds.be/.
[13] http://openvswitch.org/.
[14] http://wiki.xen.org/wiki/XCP Overview.
[15] C. Hopps, “Analysis of an Equal-cost Multi-Path algorithm,” RFC 2992.

[Online] Available: http://tools.ietf.org/html/rfc2992.
[16] D. Kerger, “Approximating, verifying and constructing minimum span-

ning tree problem,” Annals of the history of computing, 1985.

