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Background and Motivation

Mandarine  Juice  is  a  Venture  
Builder,  whose  mission  is  to  help  
startups  to  develop  innovative 
solutions  to  the  market. We  do  so 
by  providing  seed  investment  to  
entrepreneurs  but  also  by 
providing  consulting  services  on  
different  areas  as  strategy,  
financial  or  technology, empowering 
entrepreneurs to focus on the 
innovative aspects of their proposal. 
  

Current technology trends 
addresses the construction of 
technology platforms based on, 
usually, a large number of services 
that are replicated to provide high 
availability. In this context, in 2012 
came up  the  concept  of  Chaos  
Engineering:  the  idea  of  killing  
random  instances  to  test  a  
redundant architecture to validate 
that any failure did not impact 
noticeably on the overall service.
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Concept and Objectives

Objectives
O1. Chaos engineering test a typical 
production environment

 Test broker and database performance 
while scaling up the volume of messages

 Test replication persistence resistance

O2. Dimension the infrastructure 
required for scaling up

O3. Develop a chaos engineering 
workflow

Main goals

Side effects
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Experiment Setup
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Experiment Setup

• Officially, it is a container orchestrator

• In real life is a game changer on how applications 
are designed, deployed and operated

• Need to rethink existing aplications to convert to  a 
microservice architecture

• The promise is: «Just throw me more resources 
(CPU, RAM and Storage), and I will handle the 
scalability and reliability of the application»

• This is ok with stateless services, but how to deal 
with persistent storage to be distibuted and 
reliable?
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Experiment Setup

 Cloud-native distributed persistent block storage 
for Kubernetes

• Define persistent volumes to be used by K8 
pods, and it will take care of replication

• Backups to a S3 storage

• Relying on Longhorn to store tablespaces for 
MariaDB
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Experiment Setup

Fork of the MySQL relational database 
management system

• Deployed in a HA configuration (Statefulset)

• Two replication mechanism are going on here at 
the same time:

 MariaDB cluster storage replication
 Longhorn block storage replication
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Experiment Setup

 Open source message broker

• Easily deployed high availability

• It allows delivery acknowledgements

• Easily configurable cluster

• Compatible with Python through Pika
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Experiment Setup

• Open source cloud-native Chaos 
engineering platform

• Easily deployed without reconfiguring the 
Kubernetes cluster

• Failure simulation: container, pod, network, 
system time failures



Project Results
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Measurements

• Written family of scripts for creating a Kubernetes cluster with 
HA microservices in Grid5000

• Deployed tools: weave net, nginx, Longhorn, mariaDB (x4), 
rabbitmq (x4), ChaosMesh

• Deployed monitoring tools: Kubernetes dashboard, 
Prometheus, Grafana
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Measurements

Chaos mesh: 

Pod fail on feeder → feeder automatically restarts pods → Drop of feeded 
messages and automatic recovery
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Measurements

Chaos mesh: 
mariadb Pod fail  → mariadb cluster malfunctioning and little message 
queueing → Need of manual restoration
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Measurements

Chaos mesh: 

force injection latency → acummulation of messages → dump rate drop 

during the experiment → Need to configure autoscale of the consumer  
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Lessons Learned

 Fully testing distributed storage requires specific harware config 
(i.e. min. 4 disks in min. 4 nodes)

 Need to sort out message queueing and latency when system is 
stressed

 High availability is a must
 Every single app deployed has its own complexity
 Produce highly available software
 Mantain a chaos engineering cycle is crucial
 Monitoring tools are a necessity
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Impact on business

 Hands on experience on how to automate Kubernetes cluster 
creation

 Funding helps to lower the cost of learning curve of the 
platform

 Knowledge on chaos engineering techniques, stress test 
development and reliability evaluation

 Practice making HA clusters (Helm, operators, CRD)
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Impact on business

• First contact with this paradigm has taught some lessons
 High availability is a must
 Push platform to stressful limits

• Need to implement a full chaos engineering cycle
 Ensure platform responsiveness / availability
 Ensure resilience / persistence
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Value Perceived

• Availability of a large amount of resources:

• Grid5000 is a great infrastructure that can be easily used to 
test different software possibilities

• Funding helps to lower the cost of learning curve of the 
platform:

• But furthermore, it allows to dedicate time to experiment, 
which is important but not urgent in an SME, where costs 
requiere to be assigned to billable projects
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Value Perceived

Being backed by Fed4FIRE, it is possible to target more 
ambitious projects

We have spent quite a lot of time experimenting with 
technologies that otherwise  would result very difficult (both 
because the resources but also for the time needed)



Feedback
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Used resources and tools

• Testbed: Grid5000

• We used Nova and Taurus nodes in Lyon site to create 
the Kubernetes cluster

• Although tutorials on using Terraform to create a 
Kubernetes cluster in Grid5000 were available, we did 
prefer to use our own scripts, so we will be able to 
replicate the infrastructure in our environment in the 
future
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Used resources and tools

• Testbed: Grid5000

• Having such amount of resources ready to be used is 
the most appreciated value. Also, the good 
documentation to get hands on quickly is a plus.

• The header shell is astonishingly easy to use

• oarsub is a powerful instantiation and automatization tool

• Reliable nodes (none hurt during experimentation)
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Used resources and tools

• Testbed: Grid5000
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Added value of Fed4FIRE

• Diversity of available resources
● Plenty of nodes
● Plethora of hardware configurations
● High bandwidth

 Documentation
● Ease of use from day one
● Different deployment configurations

 Easy setup
● Our experiment was trivial to deploy once we decided how to deploy each 

tool
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Open questions

• After completing the experiments, there are a bunch of open 
questions that we couldn’t face this time like:

• Stress test Kafka cluster (latency, availability)

• Replication and stress test InfluxDB 

• Set a cluster-wide logging system (ECK)

We expect to have answers on this questions with new experiments 
on Fed4FIRE testbeds.
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