
WWW.FED4FIRE.EU

Review SME Continous
Call (F4Fp – SME)
CHAOS@FIRE

Virtual FEC 10

January 27th 2022

Miguel Robredo

Mandarine Juice

Outline

CHAOS ENGINEERING IN MICROSERVICE ARCHITECTURE – CHAOS@FIRE

WWW.FED4FIRE.EU

 Experiment description
● Concept and Objectives

● Background and motivation

● Experiment set-up

 Project results
● Measurements

● Lessons learned

 Business impact
● Impact on our business… How did Fed4Fire helped us?

● Value perceived… Why did we come to Fed4Fire?

 Feedback
● Used resources and tools

● Added value of Fed4Fire

Experiment Description

CHAOS ENGINEERING IN MICROSERVICE ARCHITECTURE – CHAOS@FIRE

WWW.FED4FIRE.EU5

Background and Motivation

Mandarine Juice is a Venture
Builder, whose mission is to help
startups to develop innovative
solutions to the market. We do so
by providing seed investment to
entrepreneurs but also by
providing consulting services on
different areas as strategy,
financial or technology, empowering
entrepreneurs to focus on the
innovative aspects of their proposal.

Current technology trends
addresses the construction of
technology platforms based on,
usually, a large number of services
that are replicated to provide high
availability. In this context, in 2012
came up the concept of Chaos
Engineering: the idea of killing
random instances to test a
redundant architecture to validate
that any failure did not impact
noticeably on the overall service.

WWW.FED4FIRE.EU6

Concept and Objectives

Objectives
O1. Chaos engineering test a typical
production environment

 Test broker and database performance
while scaling up the volume of messages

 Test replication persistence resistance

O2. Dimension the infrastructure
required for scaling up

O3. Develop a chaos engineering
workflow

Main goals

Side effects

WWW.FED4FIRE.EU7

Experiment Setup

WWW.FED4FIRE.EU8

Experiment Setup

• Officially, it is a container orchestrator

• In real life is a game changer on how applications
are designed, deployed and operated

• Need to rethink existing aplications to convert to a
microservice architecture

• The promise is: «Just throw me more resources
(CPU, RAM and Storage), and I will handle the
scalability and reliability of the application»

• This is ok with stateless services, but how to deal
with persistent storage to be distibuted and
reliable?

WWW.FED4FIRE.EU9

Experiment Setup

 Cloud-native distributed persistent block storage
for Kubernetes

• Define persistent volumes to be used by K8
pods, and it will take care of replication

• Backups to a S3 storage

• Relying on Longhorn to store tablespaces for
MariaDB

WWW.FED4FIRE.EU10

Experiment Setup

Fork of the MySQL relational database
management system

• Deployed in a HA configuration (Statefulset)

• Two replication mechanism are going on here at
the same time:

 MariaDB cluster storage replication
 Longhorn block storage replication

WWW.FED4FIRE.EU11

Experiment Setup

 Open source message broker

• Easily deployed high availability

• It allows delivery acknowledgements

• Easily configurable cluster

• Compatible with Python through Pika

WWW.FED4FIRE.EU12

Experiment Setup

• Open source cloud-native Chaos
engineering platform

• Easily deployed without reconfiguring the
Kubernetes cluster

• Failure simulation: container, pod, network,
system time failures

Project Results

CHAOS ENGINEERING IN MICROSERVICE ARCHITECTURE – CHAOS@FIRE

mailto:CHAOS@FIRE

WWW.FED4FIRE.EU

Measurements

• Written family of scripts for creating a Kubernetes cluster with
HA microservices in Grid5000

• Deployed tools: weave net, nginx, Longhorn, mariaDB (x4),
rabbitmq (x4), ChaosMesh

• Deployed monitoring tools: Kubernetes dashboard,
Prometheus, Grafana

WWW.FED4FIRE.EU

Measurements

Chaos mesh:

Pod fail on feeder → feeder automatically restarts pods → Drop of feeded
messages and automatic recovery

WWW.FED4FIRE.EU

Measurements

Chaos mesh:
mariadb Pod fail → mariadb cluster malfunctioning and little message
queueing → Need of manual restoration

WWW.FED4FIRE.EU

Measurements

Chaos mesh:

force injection latency → acummulation of messages → dump rate drop

during the experiment → Need to configure autoscale of the consumer

WWW.FED4FIRE.EU

Lessons Learned

 Fully testing distributed storage requires specific harware config
(i.e. min. 4 disks in min. 4 nodes)

 Need to sort out message queueing and latency when system is
stressed

 High availability is a must
 Every single app deployed has its own complexity
 Produce highly available software
 Mantain a chaos engineering cycle is crucial
 Monitoring tools are a necessity

Business Impact

CHAOS ENGINEERING IN MICROSERVICE ARCHITECTURE – CHAOS@FIRE

WWW.FED4FIRE.EU20

Impact on business

 Hands on experience on how to automate Kubernetes cluster
creation

 Funding helps to lower the cost of learning curve of the
platform

 Knowledge on chaos engineering techniques, stress test
development and reliability evaluation

 Practice making HA clusters (Helm, operators, CRD)

WWW.FED4FIRE.EU21

Impact on business

• First contact with this paradigm has taught some lessons
 High availability is a must
 Push platform to stressful limits

• Need to implement a full chaos engineering cycle
 Ensure platform responsiveness / availability
 Ensure resilience / persistence

WWW.FED4FIRE.EU22

Value Perceived

• Availability of a large amount of resources:

• Grid5000 is a great infrastructure that can be easily used to
test different software possibilities

• Funding helps to lower the cost of learning curve of the
platform:

• But furthermore, it allows to dedicate time to experiment,
which is important but not urgent in an SME, where costs
requiere to be assigned to billable projects

WWW.FED4FIRE.EU23

Value Perceived

Being backed by Fed4FIRE, it is possible to target more
ambitious projects

We have spent quite a lot of time experimenting with
technologies that otherwise would result very difficult (both
because the resources but also for the time needed)

Feedback

CHAOS ENGINEERING IN MICROSERVICE ARCHITECTURE – CHAOS@FIRE

WWW.FED4FIRE.EU25

Used resources and tools

• Testbed: Grid5000

• We used Nova and Taurus nodes in Lyon site to create
the Kubernetes cluster

• Although tutorials on using Terraform to create a
Kubernetes cluster in Grid5000 were available, we did
prefer to use our own scripts, so we will be able to
replicate the infrastructure in our environment in the
future

WWW.FED4FIRE.EU26

Used resources and tools

• Testbed: Grid5000

• Having such amount of resources ready to be used is
the most appreciated value. Also, the good
documentation to get hands on quickly is a plus.

• The header shell is astonishingly easy to use

• oarsub is a powerful instantiation and automatization tool

• Reliable nodes (none hurt during experimentation)

WWW.FED4FIRE.EU27

Used resources and tools

• Testbed: Grid5000

WWW.FED4FIRE.EU28

Added value of Fed4FIRE

• Diversity of available resources
● Plenty of nodes
● Plethora of hardware configurations
● High bandwidth

 Documentation
● Ease of use from day one
● Different deployment configurations

 Easy setup
● Our experiment was trivial to deploy once we decided how to deploy each

tool

WWW.FED4FIRE.EU29

Open questions

• After completing the experiments, there are a bunch of open
questions that we couldn’t face this time like:

• Stress test Kafka cluster (latency, availability)

• Replication and stress test InfluxDB

• Set a cluster-wide logging system (ECK)

We expect to have answers on this questions with new experiments
on Fed4FIRE testbeds.

This project has received funding from the European Union’s Horizon
2020 research and innovation programme, which is co-funded by the
European Commission and the Swiss State Secretariat for Education,
Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30

