
NOVELTY

EXPERIMENTAL EVALUATION

TOPSIS ALGORITHM

PRINCIPLE

RESULT CONCLUSION

Kubernetes Container Scheduling Strategy (KCSS)
TarekTarek MENOUE

 The novelty of the KCSS consist to select for each newly submitted
container the node that has a good compromise between hybrid
criteria related to the user needs and the state of the cloud
infrastructure.

 Fill a Decision Matrix (DM) of n lines (number of nodes) and c
columns (number of criteria). Each value 𝑓𝑖𝑗 in DM represents the
value of the node 𝑛𝑖 in criterion j.

Calculate the Normalized Decision Matrix (NDM). The normalized
value 𝑟𝑖𝑗 is determined as following:

𝑟𝑖𝑗=𝑓𝑖𝑗/ σ𝑖=1
𝑛 𝑓𝑖𝑗

2, for i = 1, ..., n and j = 1, ..., c.

Calculate the Weighted Normalized Decision Matrix (WNDM). The
weighted normalized value 𝑣𝑖𝑗 is determined as following:

𝑣𝑖𝑗 = 𝑤𝑖× 𝑟𝑖𝑗 for i = 1, ..., n and j = 1, ..., c.

𝑤𝑖 is the weight of the 𝑗𝑡ℎ criterion, and the σ𝑗=1
𝑐 𝑤𝑗 = 1 .

Determine the best (𝐴+) and the worst (𝐴−) solutions.

𝐼′ is associated to the criteria having the positive impact, and 𝐼′′ is
associated to the criteria having the negative impact.

Calculate the Separation Measures (SM), using the n-dimensional
Euclidean distance. The separation of each node from the best
solution is given by the 𝑆𝑀+formula. The separation of each
node from the worst solution is given by the following 𝑆𝑀− formula.

Calculate the Relative Closeness (RC) to the best solution. For
each node 𝑛𝑖, the 𝑅𝐶𝑖 is defined by the following 𝑅𝐶𝑖 formula.

Apply the multicriteria Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) algorithm

Choose the node that has a good compromise between six criteria:

 Duration of transmitting the image selected by the user on
the container;

 Number of available CPUs in each node;

 Size of available memory in each node;

 Size of the available storage disk in each node;

 Power consumption of each node;

 Number of running containers in each node.

 Experiments with KCSS are performed in Virtual Wall testbed.

 In our experimental environment, a speedup varied between 2%
and 8% is obtained with KCSS in terms of:

Computing time (makespan);

Power consumption.

 KCSS select for each container the node with a good compromise
between several criteria.

 KCSS is implemented in GO language inside Kubernetes with a
minimum of change.

Comparison between the computing
time (makespan) obtained by the KCSS
and the default kubernetes strategy to

schedule 45 containers submitted
online with frequency of 5 seconds.

Comparison between the computing
time (makespan) obtained by the KCSS
and the default kubernetes strategy to

schedule 45 containers submitted
online with frequency of 50 seconds.

Comparison between the power
consumption obtained by the KCSS
and the default kubernetes strategy
to schedule 45 containers submitted
online with frequency of 5 seconds.

Comparison between the power
consumption obtained by the KCSS

and the default kubernetes strategy to
schedule 45 containers submitted

online with frequency of 50 seconds.

𝐴+ = {𝑣1
+, … , 𝑣𝑐

+}
={(max(𝑣𝑖𝑗|i=1, …, n)| 𝑗 ∈ 𝐼′),

(min(𝑣𝑖𝑗|i=1, …, n)| 𝑗 ∈ 𝐼′′)}

𝑆𝑀𝑖
+ = σ𝑗=1

𝑐 (𝑣𝑖𝑗 − 𝑣𝑗
+)2 , for i = 1, ...,n

𝑆𝑀𝑖
− = σ𝑗=1

𝑐 (𝑣𝑖𝑗 − 𝑣𝑗
−)2 , for i = 1, ...,n

𝑅𝐶𝑖 = 𝑆𝑀𝑖
−/(𝑆𝑀𝑖

+ + 𝑆𝑀𝑖
−), for i = 1, ...,n.

𝐴− = {𝑣1
−, … , 𝑣𝑐

−}
={(min(𝑣𝑖𝑗|i=1, …, n)| 𝑗 ∈ 𝐼′),

(max(𝑣𝑖𝑗|i=1, …, n)| 𝑗 ∈ 𝐼′′)}

GOALS

 The KCSS is proposed to optimize the scheduling of several
containers submitted online by users. The goal is to improve the
performance in terms of computing time, power consumption and
the quality of services of the applications in the containers as much
as possible.

Tarek MENOUER and Patrice DARMON
Umanis Research & Innovation

