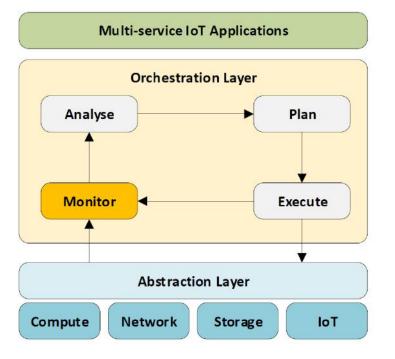


<u>Lightweight Self-adaptive</u> <u>Cloud-IoT Monitoring across</u> Fed4FIRE+ Testbeds **ANTONIO BROGI**

Department of Computer Science, University of Pisa, Italy

FEC9

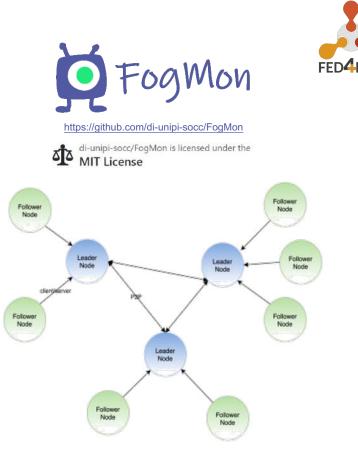

Online, May 26th, 2021

Experiment Description

Cloud-IoT Infrastructure Monitoring

- Cloud-IoT orchestration
 - much work on Analyse
 - some work on Plan & Execute
 - less work on Monitor
- Monitor pivotal to decide
 - 1. where to deploy app services at first
 - 2. when/where to migrate app services

FogMon

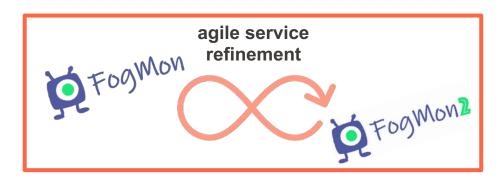

- Open source lightweight fault-resilient monitoring service for Cloud-IoT infrastructures
- The service monitors:
 - · hardware resource availability
 - end-to-end network QoS
- Hybrid overlay network, with \sqrt{N} leaders
- Latency and bandwidth
 - intra-group measurements
 - inter-group estimates

 $e.g. \ Lat(x,y) = Lat(x,L(x)) + Lat(L(x),L(y)) + Lat(L(y),y)$

Assessed in lab environment (13 nodes)

A. Brogi, S. Forti, M. Gaglianese. Measuring the Fog, Gently. ICSOC 2019.

S. Forti, M. Gaglianese, A. Brogi. Lightweight self-organising distributed monitoring of Fog infrastructures. Future Generation Computer Systems. 2021.



Objectives & Methodology

Testing, assessing and tuning the FogMon service in medium- to large-scale settings over heterogeneous Cloud and Edge resources across two testbeds within the Fed4Fire+ federation

Experiment Setup and Plan

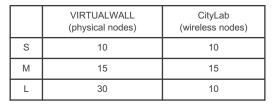
Measuring

- · footprint on hardware and bandwidth
- relative error on measurements & estimates against setup ground-truth (configured via GRE-tunnels and tc)

time to reach stability

on

- 3 types of Follower Failures (FF)
- 3 types of Leader & Follower Failures (LFF)


100+ experiments!

• 2 types of Link Failures (LF)

WWW.FED4FIRE.EU

- different numbers of Leaders (LNT)
- 20 (S), 30 (M) and 40 (L) nodes across VIRTUALWALL and CityLab
- default vs reactive configurations



Project Results

FogMon tuning and refinement

- total di-unipi-socc/FogMon is licensed under the
 MIT License
- fixed memory leaks
- fixed differential updates
- improved DB access
- improved dockerisation

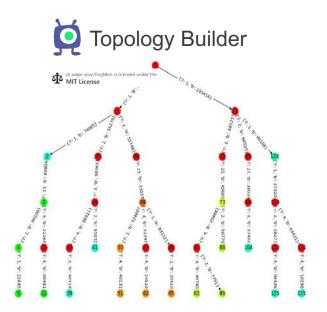
- fix BW measurements the BIT License
- 3x reduction of BW footprint
- parallelisation of latency & BW tests
- «bad news go fast» → faster reaction to link degradations and failures
- improved passive BW measurements (tuning of Assolo)
- improved accuracy of inter-group BW estimates
 BW(x,y) = min(max BW(x,n(x), max BW(y,n(y), BW(L(x),L(y))))

NWW.FED4FIRE.EU

8

Lessons Learnt on FogMon 2.0

- Average relative error on BW estimates from $\simeq 1000\%$ to $\simeq 12\%$
- Average relative error (both on measurements and estimates): $\simeq 10\%$
- Reduced BW footprint by 70% (default) and 40% (reactive)
- Slightly increased HW footprint (RAM < 30MB, CPU < 4%)
- Reactive faster in identifying changes but more resource intensive
- Shorter time to stability in default configuration
- \sqrt{N} Leaders good compromise in all configurations
- From TRL 4 (lab) to TRL 5 (relevant environment, 40 nodes)


Version & Config	Relative Error				Footprint				Time to
	Lat (intra)	BW (intra)	Lat (inter)	BW (inter)	CPU %	RAM	BW (Tx)	BW (Rx)	stability
FogMon 1.x (default)	6.2%	6.23%	10.23%	766.54%	1.4%	12.45 MB	213 KBps	218 KBps	692 s (11 m 32 s)
FogMon 1.x (reactive)	6.55%	5.72%	15.20%	1461.32%	2.25%	13.86 MB	298 KBps	300 KBps	349 s (5 m 49 s)
FogMon 2.0 (default)	2.31%	5.92%	11%	11.33%	1.41%	20.84 MB	65 KBps	66 KBps	572 s (9 m 32 s)
FogMon 2.0 (reactive)	6.44%	6.47%	11.78%	12.28%	3.56%	24.55 MB	167 KBps	173 KBps	396 s (6 m 36 s)

- All experiments repeated on FogMon 2.0
- Further experiments to tune number of Leaders among $\frac{1}{2}\sqrt{N}$, \sqrt{N} , $2\sqrt{N}$.

Experiment tooling

Relative of						
Moment	Latency intra	Latency inter	Bandwidth intra	Bandwidth inter	Performance (sec)	Stable
0	0.14	0.11	0.03	0.14	556.692	True (10)
1 Footprint	0.09	0.02	0.03	0.02	594.057	True (10)
mean cpu		mean mem	п	ean tx	mean rx	
0.96%		14.72MB	8	5.80KB/s	86.38KB/s	

Business Impact

Impact on research

Leveraging Fed4Fire+ facilities, we have shown that FogMon:

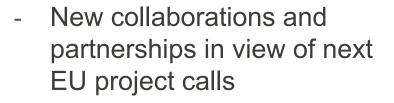
- can be deployed across network boundaries and heterogenous computing capabilities
- detects and adapts to link failures
- exhibits low acceptable footprint on nodes and links at increasing infrastructure sizes (from 20 to 40 nodes)

+ Improved, assessed and validated FogMon service

Not possible without large-scale heterogeneous federated testbeds!

M. Gaglianese, S. Forti, F. Buti, F. Paganelli, A. Brogi. Lightweight Self-adaptive Cloud-IoT Monitoring across Fed4FIRE+ Testbeds (LiSCIo) [Dataset]. Available on Zenodo: <u>http://doi.org/10.5281/zenodo.4682987</u> (2021)

Gained knowledge & competences



- Experience in using federated distributed testbeds
- New expertise gained in tools for testbed configuration and setup (JFed, Fabric, tc, GRE-tunnels, etc.) and their automation
- Stronger competences in the fields of next-gen Cloud-IoT infrastructures (from monitoring to service placement to SE and virtualisation techniques)

Other scenarios

- Incorporate FogMon in other solutions for the adaptive placement of next-gen applications over the Cloud-IoT continuum
- Collaborate with existing H2020 projects, e.g.

- Publications in international conferences and journals

M. Gaglianese, S. Forti, F. Buti, F. Paganelli, A. Brogi. *Lightweight Selfadaptive Cloud-IoT Monitoring across Fed4FIRE+ Testbeds*. (WIP.)

Follow-up activities

Follow-up Experiments

- Further engineer FogMon (hybrid Cloud-Edge architecture for storing data)
- Alternative methods for estimating bandwidth (e.g. matrix completion) or to identify failures (e.g. ML)
- Improved topology restructuring and Leader selection

New initiatives

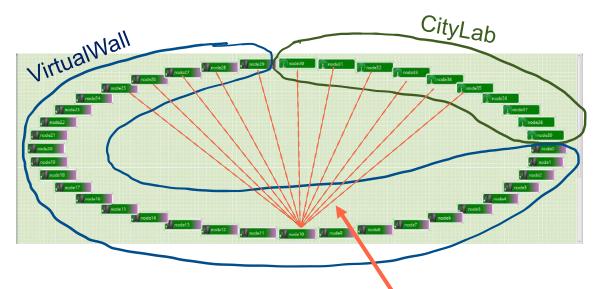
- National/international projects on automating the whole lifecycle of applications in the Cloud-IoT continuum
- Start-up spin-off business on Cloud-IoT infrastructure monitoring?

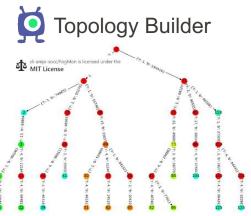
Feedback

Procedure & Administration

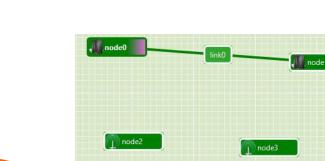
- Very adequate and sustainable level of work for admin / feedback / docs
- Lean documents to fill in from proposal to reporting
- Very useful conference calls and meetings

Setup of the experiment




- Only 8 weeks to setup and run the experiment for the first time (installing Docker, learning GRE-tunneling, tc and fabric)
- Another 2 weeks to tune experiment code and automatise whole setup and data collection process
- JFed greatly simplified the above: single point of contact & service

Setup of the experiment (cont.)


- Topology builder creates all N² end-to-end connections between all nodes across testbeds via tc and GRE-tunnels
- Mimicks a **hierarchical Cloud-IoT network** with Edge (at CityLab), transport (at both testbeds) and Cloud (at VIRTUALWALL) nodes, with lifelike latencies and bandwidths

Fed4Fire+ Portfolio

- All experiments requirements were fulfilled (even during an imec event, we could use other federated resources!)
- Fed4Fire+ could consider extending link impairment facilities of Virtualwall to other testbeds
- Fed4Fire+ could allow users to specify the characteristics of an arbitrary number of end-to-end links instead of groups of endto-end links (via bridges) through JFed

Could use our automated topology builder as a starting point!

Documentation & Support

- Documentation was very useful and complete (perhaps, some tutorials on GRE-tunneling and tc could be added)
- Very responsive, exhaustive and on-point online support from testbed owners/managers

Other feedback

FogMon 2.0 and all the opensource tooling of LiSClo remain among the set of services that can be used by future experimenters at Fed4Fire+

Thanks are due to ...

Marco Gaglianese

Stefano Forti

Federica Paganelli

Daniel van den Akker Johan Bergs Bart Braem Brecht Vermeulen

Francesco Buti

for all their support!

for all their work!

THANKS FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU

Parameters	Description		
Report time (leader-to-follower communication period)	The time between two reports sent by a Follower to its Leader		
Test time	The interval between two iterations of latency and bandwidth tests		
Leader Check	The number of report time intervals before a Follower looks for a closer Leader		
Latency time	The time between two latency tests on the same link		
Bw Time	The time between two bandwidth tests on the same link		
Silent period	The time before a non-responding Follower is considered dead by a Leader		
Prop time (leader-to-leader communication period)	The number of seconds between gossiping rounds among Leaders		
Sensitivity (of followers)	Threshold relative difference on average and variance for a measurement to included in a report.		
Measurement Window (size of data aggregation)	Number of measurements that are kept to compute averages.		
1 00 0	gurable parameters in FogMon.		

Parameters	Default	Τ	
leader to follower communication period)	30 c		

30 s 30 s	15 s 15 s
30 s	15 s
102	
8	4
30 s	15 s
600 s	120 s
90 s	45 s
20 s	10 s
15%	10%
20	10
-	600 s 90 s 20 s 15%

Table 3 Experimental configurations of FogMon.

