

ERASER: Experimenting with real application-specific QoS guarantees in a large-scale RINA demonstrator

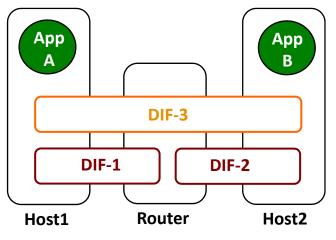
Dr. Jordi Perelló Universitat Politècnica de Catalunya (UPC) – BarcelonaTech

> FEC4 Meeting Brugge (Belgium), October 8-10, 2018

WWW.FED4FIRE.EU

Outline

- Experiment description
- Project results
- Business impact
- Feedback to Fed4FIRE+



EXPERIMENT DESCRIPTION

-

RINA & QTA-Mux

- Clean-slate network architecture for the Future Internet, based on a single type of layer called DIF (i.e., Distributed IPC Facility)
- Multiple **DIF instances** are always **stacked one on top of another**, each one providing IPC services to the DIFs or Apps above
- DIFs implement the same two protocols, customizable via programmable policies
- The QTA-Mux policy is the responsible for the RINA QoS support
- However, its performance has only been evaluated on single DIF scenarios so far

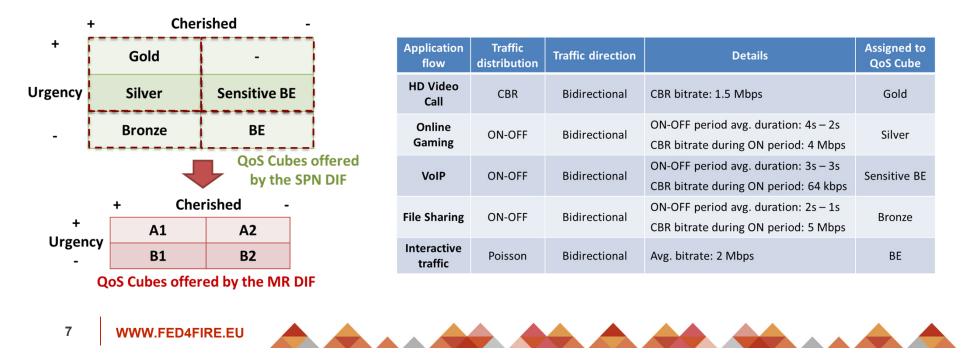
4 WWW.FED4FIRE.EU

ERASER objectives

5

- 1. To define **QTA-Mux deployment scenarios** and **QoS Cubes** to be enforced in a **large-scale RINA network** scenario with multiple DIFs stacked one on top of another
- 2. To emulate a **realistic large-scale RINA network** scenario injecting **synthetic traffic flows** reproducing **heterogeneous applications**
- 3. To evaluate the RINA QoS support by measuring the QoS metrics perceived by synthetic traffic flows end-to-end
- 4. To perform a **real HD video (1080p) streaming demo** to better show the RINA QoS support under high congestion

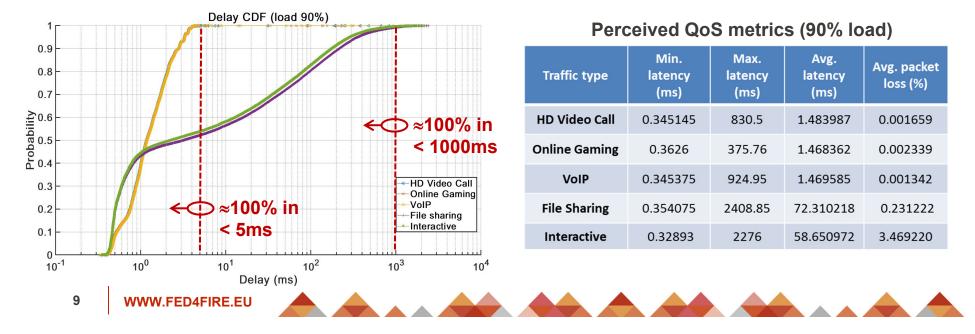
ERASER scenario over the F4F+ Virtual Wall



37-Node Metro-Regional RINA network: Configured DIFs To/From another Service Provider VLC VLC To/From VideoLAN VideoLAN HR another Service DATACENTRE (DC) PREMISES Server -0-2 -0-1 Client Provider iporinad iporinad VLC VideoLAN Server HD Video Streaming Application DIF HR-0-1-2 2-1-2 HR HR IR 0-1-1 2-1-1 Metro-Regional DIF HR 2.2 Eth Shim DIF Eth Shim DIF Video client 1 (close to the DC) User Home Datacenter Server PE PE Interior terminal router border router router router router HR-2-2-1 HR-2-2-2 HR HR-HR-2-2-(0-2-2)-2-: Video client 2 (at mid To/From distance to the DC) another Service End-User Local Service Provider Metro-**Cloud Data Center** Video client3 Provider Area Network **Regional Network** Premises (far from the DC) 6 WWW.FED4FIRE.EU

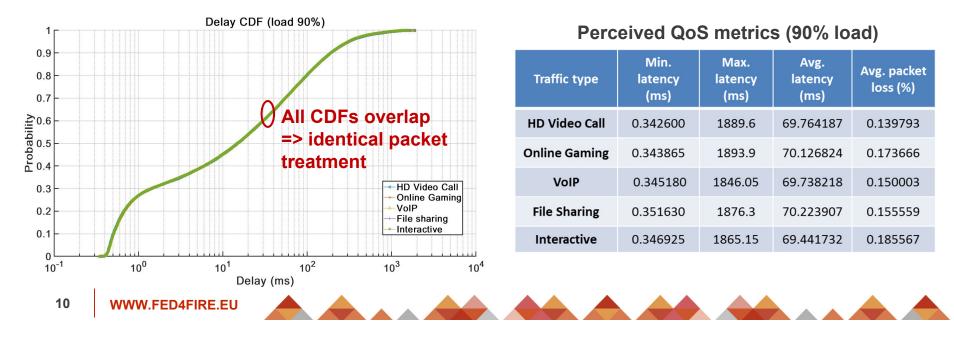
QTA-Mux deployment scenarios

- At both SPN and MR DIFs / Only at the SPN DIF
- Offered QoS Cubes & synthetic application flow characteristics:


PROJECT RESULTS

Open Research Data in: http://doi.org/10.5281/zenodo.1420391

QTA-Mux at both SPN & MR DIFs


- 75 bidirectional synthetic traffic flows injected into the SPN DIF; NIC capacities limited to reproduce 70, 80 and 90% offered load scenarios
- Adequate QoS differentiation even under high congestion:

QTA-Mux at the SPN DIF only

- 75 bidirectional synthetic traffic flows injected into the SPN DIF; NIC capacities limited to reproduce 70, 80 and 90% load scenarios
- **QoS differentiation lost at the MR DIF** (default FIFO scheduling):

Final HD video streaming demonstration

11


• 75 bidirectional synthetic traffic flows injected into the SPN DIF; NIC capacities limited to reproduce 80% and 90% load scenarios

QoS Cube assigned S1 -> C-2-2 S1 -> C-2-1 S1 -> C-0-2 at HD Video (2 hops at <u>MR</u> (1 hop at MR DIF) (4 hops at MR DIF) Streaming DIF DIF) Gold 5 (perfect quality) 5 (perfect quality) 5 (perfect quality) 2 (severe stuttering 1 (completely 2 (severe stuttering Best Effort & frames lost) & frames lost) frozen)

Perceived QoE (80% load) from 1 (worst) to 5 (best)

Perceived QoE (90% load) from 1 (worst) to 5 (best)

	QoS Cube assigned at HD Video Streaming DIF	S1 -> C-2-1 (1 hop at MR DIF)	S1 -> C-2-2 (2 hops at MR DIF)	S1 -> C-0-2 (4 hops at MR DIF)	
	Gold	5 (perfect quality)	3 (moderate stuttering & frames lost)	5 (perfect quality)	
	Best Effort	2 (severe stuttering & frames lost)	1 (completely frozen)	1 (completely frozen)	
WWW.FED4FIRE.EU					

BUSINESS IMPACT

Value perceived

- Better understanding of the RINA QoS support through experimentation in a large-scale network scenario
- Better positioning within the RINA research community as a team expert in RINA, particularly in its QoS mechanisms and policies
- Gained expertise on available open-source RINA implementations and tools for future experiments and test-bed setups
- Gained expertise on using Fed4FIRE+ for large-scale experiments in the future

Why Fed4FIRE+?

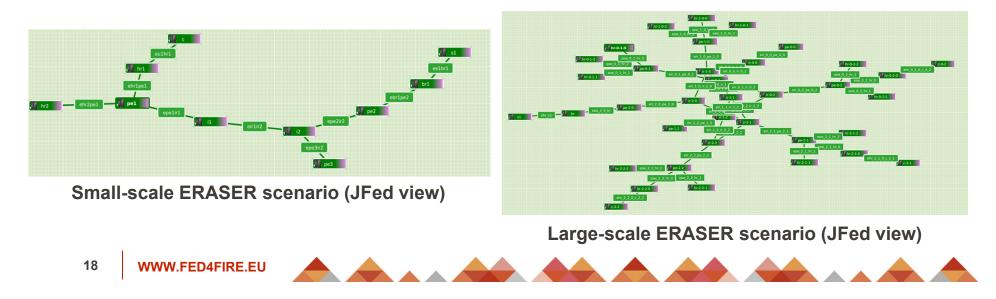
- Our group at the UPC did not own the resources needed for the ERASER large-scale experimentation activities
- Virtual Wall previously used for RINA-related experimentation
- Fed4FIRE+ Open Call 3 offered funding for conducting experiments
- Accepted experiments in Fed4FIRE+ Open Calls receive support from the Patron(s), important for first-time users

Follow-up activities: ALLIANCE test-bed

- We plan to deploy a **small-scale RINA network test-bed** in the framework of the Spanish project ALLIANCE
- The experience with open-source RINA implementations and tools gained in ERASER will be key to this end
- Interesting proposals yielding good results at small-scale might be good candidates for large-scale evaluation over Fed4FIRE+

Follow-up activities: Other

- Dissemination of the obtained results in ERASER
 - <u>**Target</u>**: 6th International Workshop on the Recursive InterNetwork Architecture (RINA 2019), co-located with the 22nd Conference on Innovation in Clouds, Internet and Networks (ICIN 2019), February 2019, Paris (France)</u>
- Participation in new RINA-related proposals to be submitted to upcoming H2020 calls around 5G and the Future Internet
- Inclusion of ERASER experiment outcomes in Master and undergraduate lectures at the UPC



FEEDBACK TO FED4FIRE+

Used resources

- ERASER small-scale RINA scenario for initial software integration and tests: 10 physical machines in Virtual Wall 2
- ERASER large-scale RINA scenario for the complete experiments & demonstration: 37 physical machines in Virtual Wall 1

Used tools (1/2)

- **JFed** has been initially used to configure the small-scale experiments, check physical machine availability, reboot nodes, etc.
- RINA-specific configurations (creation of DIFs, enrolment of nodes in DIFs, allocation of flows, etc.) are tedious to be performed manually
- Hence, we started using **Rumba** from the very beginning
 - Python framework to easily define large RINA scenarios and run scripted experiments, e.g., over the Fed4FIRE+ Virtual Wall
 - Developed in the H2020 ARCFIRE project
 - Presented and demonstrated at previous FEC2 and FEC3 meetings

Used tools (2/2)

- ERASER has also used more open-source implementations and tools made available by the RINA research community:
 - IRATI RINA Stack for OS/Linux
 - QTA-Mux scheduling policy
 - RINA-tgen (extended to generate CBR, Poisson & ON-OFF traffic)
 - rina-echo-time (ping-like application used to measure e2e latencies)
 - iporinad (used to tunnel IP video streaming traffic over RINA)
- Win-win situation! ERASER has also served to test them, reporting encountered bugs and required extensions to their original developers

Added value of Fed4FIRE+

- Large amount of physical resources available for experimentation
- Availability of a very significant number of federated test-beds with diverse networking technologies
 - **Unified and easy setup of experiments** spanning several test-beds
 - **Offered tools** to support and facilitate experimentation activities
- -
- **Available documentation**

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU