

ERASER: Experimenting with real application-specific QoS guarantees in a large-scale RINA demonstrator

GOALS

- **1. To define QTA-Mux deployment scenarios** and QoS cubes to be ensured in a large-scale metro/regional RINA network
- 2. To emulate a realistic large-scale metro/regional RINA network injecting synthetic application traffic flows
- **3. To evaluate the RINA QoS support** measuring the QoS metrics perceived by such synthetic traffic flows end-to-end
- **4. To perform a real HD video (1080p) streaming demo** to better show the RINA QoS support under high congestion

CHALLENGES

- **Besides JFed**, several open source RINA prototypes have been employed, requiring their initial integration & testing:
 - IRATI RINA Stack for OS/Linux
 - Rumba
 - QTA-Mux scheduling policy
 - RINA t-gen
 - rina-echo-time
 - iporinad

Configured DIFs in the emulated scenario

Offered QoS cubes at SPN and MR DIFs:

Synthetic application traffic flow characteristics:

Application flow	Traffic distribution	Traffic direction	Details	Assigned to QoS Cube
HD Video Call	CBR	Bidirectional	CBR bitrate: 1.5 Mbps	Gold
Online Gaming	ON-OFF	Bidirectional	ON-OFF period avg. duration: 4s – 2s CBR bitrate during ON period: 4 Mbps	Silver
VoIP	ON-OFF	Bidirectional	ON-OFF period avg. duration: 3s – 3s CBR bitrate during ON period: 64 kbps	Sensitive BE
File Sharing	ON-OFF	Bidirectional	ON-OFF period avg. duration: 2s – 1s CBR bitrate during ON period: 5 Mbps	Bronze
Interactive traffic	Poisson	Bidirectional	Avg. bitrate: 2 Mbps	BE

RESULTS

	Traffic type	latency (ms)	latency (ms)	latency (ms)	loss (%)
	HD Video Call	0.345145	830.5	1.483987	0.001659
	Online Gaming	0.3626	375.76	1.468362	0.002339
	VoIP	0.345375	924.95	1.469585	0.001342
	File Sharing	0.354075	2408.85	72.310218	0.231222
	Interactive	0.32893	2276	58.650972	3.469220

QTA-Mux at both SPN & MR DIFs (90% load)

A synthetic traffic matrix composed of 75 bidirectional flows (15 of each type) is injected into the network, subsequently limiting the capacity of NICs between IRs so as to reproduce 70%, 80% and 90% offered load scenarios

QoS Cube assigned at HD Video Streaming DIF	S1 -> C-2-1 (1 hop at MR DIF)	S1 -> C-2-2 (2 hops at MR DIF)	S1 -> C-0-2 (4 hops at MR DIF)
Gold	5 (perfect quality)	5 (perfect quality)	5 (perfect quality)
Best Effort	2 (severe stuttering & frames lost)	1 (completely frozen)	2 (severe stuttering & frames lost)
QoS Cube assigned at HD Video Streaming DIF (1 hop at MR DIF)		S1 -> C-2-2 (2 hops at MR DIF)	S1 -> C-0-2 (4 hops at MR DIF)
Gold	Gold5 (perfect quality)		5 (perfect quality)
	2 (severe stuttering		1 (completely

HD video streaming demo: Video qualities at destination in 80% (top) and 90% (bottom) load scenarios

1 (completely frozen)

frozen)

CONCLUSIONS

- When **configured at both SPN & MR DIFs**, **QTA-Mux** provides **effective QoS differentiation based on both delay and loss requirements**, even under high congestion (90% offered load)
- Conversely, when configured at the SPN DIF only, the underlying default FIFO scheduling at the MR DIF thwarts it, receiving all flows identical treatment, eventually.
- Final demonstration results show appropriate QoE of the received HD video streaming session in almost all situations when assigning flows the Gold QoS Cube

POST MORTEM

& frames lost)

Best Effort

- **Experience gained in ERASER** with open-source RINA implementations and tools will be **leveraged to deploy a small-scale RINA network test-bed at the UPC** in the context of the Spanish National project ALLIANCE, so as to open new research lines around RINA
- Interesting proposals yielding good results at smallscale might be good candidates for large-scale evaluation over Fed4FIRE+
- **Dissemination of the ERASER results** and how **Fed4FIRE+ has allowed us to obtain them** will also be targeted