

Rahul Karade

asvin.io

Review Open Call SME-2 Extended Stress tests for asvin.io

Virtual Review Meeting Open Call Experiments

19th November 2020

asvin.io

HEALING THE INTERNET OF THINGS

Comprized of 4 components

- Customer Platform
- Blockchain
- IPFS
- Version Controller

- Evaluation of scalability, resilience and performance
- Generate stressed conditions for the platform
- Examine feasibility of PUF, Homomorphic and Functional encryption
- Find pain points of the platform
- Optimize platform configurations by iterative experiments

- Generate high traffic for the platform using IoT device Simulation
- Prepare asvin platform for the market release
- Verification and validation of the architecture
- The success of the stage 1 experiment
- Fed4Fire+ experiments are cost effective
- Diversified resources on Fed4FIRE+ testbeds

Background & Motivation

Experiment Setup

FEATURES

- Kubernetes cluster of 150
 nodes
- Control server to build and deploy docker images
- Grafana to visualize
 analytics
- InfluxDB to store time series

https://lib.ugent.be/catalog/rug01:002494719

- The asvin platform performed exceptionally well in stressed conditions.
- The device registrations on the Blockchain, rollout management on customer platform and firmware distributing on IPFS were smooth and seamless.
- The SRAM based PUF solution is reliable for generating secured keys for cryptographic applications. The Homomorphic and functional encryptions need improvements.
- The asvin platform is adaptable to network latency and bandwidth limitation

FIRMWARE UPDATE

RESPONSE TIME

Lessons Learned

- The distributed and decentralized nature of the asvin platform make it highly scalable and resilient.
- The asvin platform can handle burst of requests without congestion.
- The PUF based cryptographic solution is a value addition.
- The horizontal scaling of the platform is very productive for load balancing.
- Fed4FIRE+ experiments can be tailored for specific needs

- Acquired multiple pilot projects
- Received several startup awards
- Streamlined time to market
- Improved brand value and market presence
- Backing of EU sponsored project
- Overall a better platform

Business Impact

How did it Help?

- The iterative experiments generated humongous data
- The data was converted into actionable insights
- A credible validation of scalability
- Fed4FIRE+ experiments gave practical knowledge
- Fed4FIRE+ experiments reinforced trust in our solution.
- Acquired new skills, e.g. Kubernetes

- Increased knowledge about the architecture
- Practical experience
- Proof of scalability and resilience
- Acquired new competence
- Confidence to run experiments
 on Fed4FIRE+ in future
- Edge over competitors

Value Perceived

- Open, reliable and highly accessible
- Credibility of European Union
- Diversity of available resources
- Simple, efficient and costeffective experimental process
- Excellent technical support and documentation
- Combining infrastructures
- Cost effective

Why Fed4FIRE+?

Resources and Tools

JFED

) 🖨 jFed login	_	_	_
🎝 jF	ed Lo	gin	
User certificate: <cached login=""></cached>			Browse
Username: Authority:	asvin imec Virtual Wall 2		
Cert expires: Password:	2021-11-01 🗸		
		+) Logi	n
Ente	r the password associ	ated with the certifica	te
0	Connectivity Tester	C Advanced login	A Reset jFed

USAGE

- Provision and manage experiment on testbeds
- RSpec
 - Network and resource configuration
- ESpec
 - Bootstrap an experiment
- Testbed
 - Virtual Wall 1

14 WWW.FED4FIRE.EU

Resources and Tools

GENERATE ESPEC

generate-espec> python2.exe .\main.py --help usage: main.py [-h] [--nodes [NODES]] [--no-control-server] [--gateway] [--wall {wall1,wall2}] Generate espec for kubernetes optional arguments: -h. --help show this help message and exit amount of nodes in the generated espec, not including --nodes [NODES] the master node --no-control-server Do not include the code to provision and setup a control server with influx, grafana, private docker registry and control website add a gateway + apache server for delay testing --gateway --wall {wall1, wall2} Target Virtual Wall, defaults to wall2 generate-espec> python2.exe .\main.py --wall wall2 --node 100

USAGE

- Tool written in python
- Generate ESpec for Virtual Wall1 and Wall2
- Easy to create and deploy Kubernetes cluster on testbeds

https://github.ugent.be/ilemaes/generate-espec

16 WWW.FED4FIRE.EU

Resources and Tools

KUBERNETES

USAGE

- Container orchestration
 system
- Used to deploy, scale and manage container applications

Experiment Setup

CONTROL SERVER

() [2001:6a8:1d80:2021:230:48ff:fef1:1c2a]:8000/image/

Experiments Images

Images

- id: 1, tag: asviniot7, tarfile: Download tarfile, build_started: True, build: True
- id: 2, tag: asvincurl, tarfile: Download tarfile, build_started: True, build: True
- id: 3, tag: asviniot-response-time, tarfile: Download tarfile, build_started: True, build: True
- id: 4, tag: asvin-firmware-update, tarfile: Download tarfile, build_started: True, build: True
- id: 5, tag: asvin-performance, tarfile: Download tarfile, build_started: True, build: True
- id: 6, tag: asvin-latency, tarfile: Download tarfile, build_started: True, build: True
- id: 7, tag: asvin-latency-increase, tarfile: Download tarfile, build_started: True, build: True
- id: 8, tag: asvin-bandwidth, tarfile: Download tarfile, build_started: True, build: True
- id: 9, tag: asvin-blockchain-block, tarfile: Download tarfile, build_started: True, build: True

USAGE

- Build and deploy docker images.
- Start and control an experiment on cluster
- Scale containers on the cluster
- Utilize InfluxDB and Grafana for visualization

Asvin Platform

DASHBOARD

USAGE

- Firmware management
- Device management
- Rollout management
- User management

- User friendly interface of jFed experimenter
- Around the clock technical support
- Abundant nodes on testbeds, Wall1 206 and Wall2 159
- High speed internet connectivity on testbeds
- Network impairment e.g. delay, packet loss and bandwidth limitation possible

Added Values

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU