

MMT-IoT: Security Monitoring for IoT and 5G

Edgardo Montes de Oca (<u>edgardo@montimage.com</u>) Vinh Hoa La (<u>vinh@montimage.com</u>)

Fed4FIRE+ - Open Call Experiments - Virtual Review

November 19th 2020

Agenda

Experiment description

Concept and objectives Background and motivation Experiment setup

• Demo

Results Obtained and Findings

w-iLab.t test Log-a-Tec test MMT-IoT achievements

- Business impact
- Feedback

Experiment Descriptions (1/5) Concepts and Objectives

CONCEPTS

- MMT-IoT: Security solution for IoT networks.
- It performs complex network event correlation.
- Uses network events to detect security incidents.
- Network radio sniffing technology.

OBJECTIVES

- Analyse the performance and scalability of MMT-IoT:
 - Determine the limits and how to scale further.

nontimage

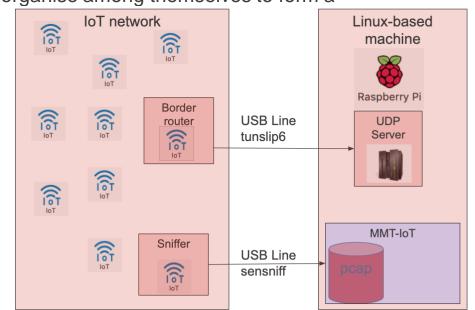
- Perform security analysis in real deployments:
 - Detection of typical attacks in IoT.

General Objective: Provide a general view of the MMT-IoT solution and its efficiency in real-life scenarios.

Experiment Descriptions (2/5)

Background and Motivation

- Montimage developed an IoT security solution called MMT-IoT
 - $\circ~$ PoC in the context of H2020 ANASTACIA project.
 - Tested in emulated scenarios.
 - No physical deployment was made so far.
- Montimage increased the Technical Readiness Level (TRL) of this solution from TRL 3 (PoC) to TRL 4 (validation in lab/testbeds) thanks to F4Fp-SME-Stage 1.
- MMT-IoT represents a new asset in the ecosystem of Montimage that we aim to exploit.
- In participating in F4Fp-SME-Stage 2, Montimage improved the solution to reach TRL 6.

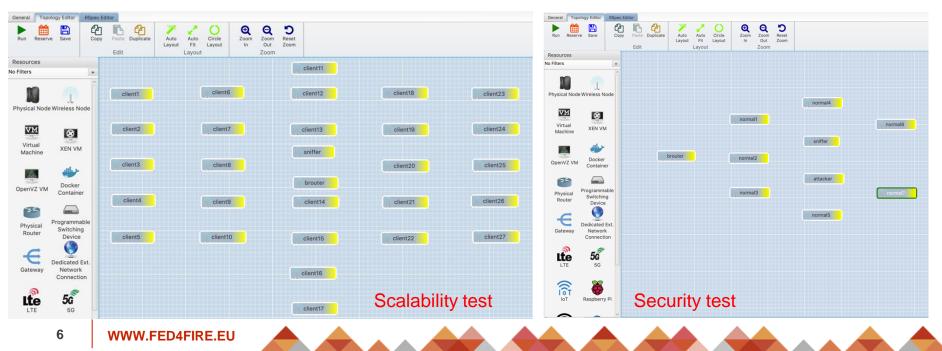


Experiment Descriptions (3/5)

Experiment setup (1/3): General architecture

- Border Router: the edge device placed between the IoT network and the traditional IP network. It acts as the gateway collecting the sensed data sent by the IoT 6LoWPAN devices.
- Client: The clients and the Border Router self-organise among themselves to form a 6LoWPAN network.
 - Normal clients report sensed data every 10 seconds
 - Attacker client behaves interchangeably in the three modes (Normal, DoS attack and Dead modes).
- Sniffer: capturing all network frames and streaming them to the host.
- MMT-IoT: analyses IEEE 802.15.4/6LoWPAN traffic.

5

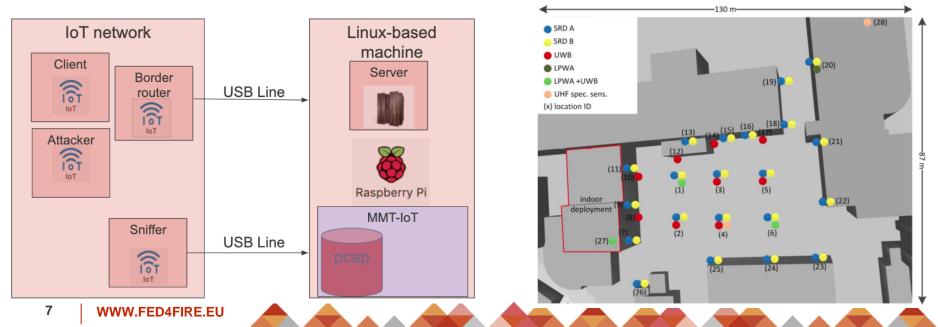


nontimage

Experiment Descriptions (4/5)

Experiment setup (2/3): w-iLab.t (imec)

- Reserved nodes on iMinds, deployed nodes using jFED
- Scalability test: 27 clients (attackers and normal ones), 1 sniffer, 1 border router
- Security test: 7 normal clients, 1 attacker, 1 sniffer, 1 border router



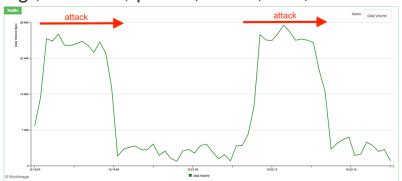
nontimage

Experiment Descriptions (5/5)

Experiment setup (3/3): Log-a-Tec (JSI)

- 4 Zolertia-Remotes: Border Router, Sniffer, Attacker, Client
- A Raspberry Pi provides the Linux-based machine
- The devices were sent to JSI and placed at different positions near running Loga-Tec testbed

🗩 montimage



Results Obtained and Findings (1/3)

w-iLab.t (imec)

- Scalability test:
 - Max data bitrate: 32 Kbps (Limit declared by Zolertia's provider: 50 Kbps)
 - Physical factors affect the transmission, e.g., antenna, power, noise, etc.,
 - Such IoT devices are not always stable.
 - DDoS alerts were raised as expected when multiple nodes performed DoS attack

- Security test:
 - Dead mode, DoS attack and incorrect FCS (Frame Check Sequence) were correctly alerted.

Results Obtained and Findings (2/3)

Log-a-Tec (JSI)

- The sniffer captured not only traffic of Montimage's four devices but also the one generated by Log-a-Tec testbed (at least 10 nodes found)
- In general, more traffic was captured if:
 - The sniffer "S" (together with Montimage's equipment) is placed in a central position
 - The sniffer is placed close to the Border Router "BR" of JSI's network.
- DoS attacks, Node failures and incorrect FCSs (Frame Check Sequences) were correctly alerted
- Surprisingly, some **DDoS** alerts were observed although Montimage prepared only one Zolertia Remote acting as the DoS attacker.
 - Another node of IJS's testbed sending data at a very high rate?
 - JSI explained: "As Log-a-Tec devices use 6TiSCH standard, a node not receiving an acknowledgement for a sent packet would try to retransmit it (up to 8 packets in a row within a short interval of time, since the timeslot of the 6TiSCH is only 10ms)

Results Obtained and Findings (3/3)

Achievements and Lessons Learned

- We managed to perform all planned experiments despite that the deployment in IoT devices is not a simple task.
- A number of adaptations/modifications have been integrated to MMT-IoT so that the tool is able to work with IEEE 802.15.4/6LoWPAN traffic:
 - New plugins (for analysing and extracting the statistics).
 - Enabling the configuration of the netstack.
 - New security rules (for detecting misbehaviours)
 - New dashboards (for visualising the statistics and detections)
- MMT-IoT behaves as expected in real IoT environment.
 - Detecting security attacks
 - Determining the maximum throughput that depends mostly on the sniffing capacity.

Business impact (1/4)

Impact in Montimage's business

- Industrial-level validation of a new product (MMT-IoT) in a novel domain (IoT/5G):
 - Commercialisation of a version incorporating IoT networks in our existing products: MMT-Box solution for small networks and an EPCin-a-Box solution for 4G/5G networks allowing monitoring network traffic in enterprises (e.g. Industry 4.0) or domestic networks.
 - Solution can be applied to a wide range of domains (e.g. smart cities, smart homes, e-health, manufacturing).
 - Demonstrator to convince future customers.

Business impact (2/4)

Value perceived. How FED4FIRE+ helped Montimage?

- Added value on implementing the solution on real IoT devices (e.g., Zolertia) in different contexts
 - Complex and expensive without Fed4FIRE+.
- Gain of knowledge about scalability and the bottleneck of the MMT-IoT solution.
 - Scalability testing in real environments better than in emulated scenarios.
- Adaptation to work on a real IoT environment.
 - Advance beyond a limited Proof-of-Concept phase.

Business impact (3/4)

Why did Montimage come to FED4FIRE+?

- Availability of different IoT deployments:
 - Federation of testbed infrastructures.
 - Access complex and expensive IoT deployments.
 - Speedup and improve the readiness of our solution.
 - Scalability testing in realistic scenarios.
 - Otherwise difficult to validate our solution.
- Collaboration with other stakeholders in different countries.
 - Small but effective financial support.

montimage FED4FIRE

Business impact (4/4)

Follow-up activities

- An industrial paper being prepared for submission.
 - "Security Monitoring on real IoT-6LoWPAN testbeds"
- Marketing video:
 - <u>https://drive.google.com/file/d/1mOZXNF5pNHO-</u> <u>Yti1G9_gbPTgKx_qZxyR/view?usp=sharing</u>
- New IoT experimentations.
 - 10 more Zolertia Re-Motes newly purchased
- New H2020 projects and proposals
 - H2020 DigitBrain, H2020 Sancus, Green Deal (IoT for Ports, Fires)
- In contact with big industrials in France interested in the solution

Feedback (1/5)

Used Resources and Tools: jFed (1/2)

- Positive aspects:
 - Nodes can be configured in a graphical manner and/or by modifying/reloading the RSPec text file. It is, thus, easier for beginner users to design and configure simple experiments as well as for more experienced users to create/redo more complicated ones.
 - It is possible to save the **OS images** of the nodes for further reuse. Save a lot of time by avoiding re-installing the pre-required packages/tools.
 - **Scripts** can be added to be run at **OS boot** so that the nodes can be ready right after the experiment is launched.
 - **SSH connections** can be established so that one can intercept in real-time even when the experiment is running.
 - It is possible to download/upload files and repositories between a node of the experiment and our jFed host machine, as well as among the experiment nodes.

Feedback (2/5)

17

Used Resources and Tools: jFed (2/2)

- Points to be improved:
 - Transferring files sometimes slow (some bytes/s)
 - JFed experimenter could be frozen if the manipulation is done too quickly, especially when requesting online resources (e.g. select the saved OS images)

Feedback (3/5)

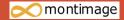
Used Resources and Tools: Testbeds

- w-iLab.t platform:
 - The "bare metal" access allowed us to easily deploy our software and test it with no further limitations.
- Log-a-Tec platform:
 - A bit more complicated because we had to deploy everything on the devices before sending them by post.
 - Happily SSH connection was provided so that we could debug whenever we needed and the partners at JSI were really helpful for performing the experiments.
 - However, with no possibility of directly accessing their testbed, we were not able to perform a more complete set of tests involving different configurations.
- 18 WWW.FED4FIRE.EU

Feedback (4/5)

Documentation and support

- The documentation provided was quite extensive and based on the experience gained from the first phase, we had no problem setting up and running the experiments.
- We had to contact the individual testbeds for dedicated technical questions and everything was cleared up via email in a timely manner.


Feedback (5/5)

Procedure / Administration

- Administration work: level of work is not at all excessive.
- Feedback from platform operators: really responsive and helpful.
- Writing documents: effort required is not very high with respect to the effort allocated to the developments and experiments.
- Attendance to conference calls: none during the execution of the work, participation after will not represent much effort.

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU