

A mobile sensing platform for Smart Cities -CityScan

Ivan Minakov

KMB Lab Srl

FEC7

A mobile sensing platform for Smart Cities - CityScan

STAGE 2 EXPERIMENT

CityScan Concept

CityScan is a cost-efficient multipurpose mobile sensing platform to address the problem of valuable portable items being lost or stolen in the urban environment

4

Objectives & Challenges

Development and optimization of the wireless interfaces and communication components for efficient operation in the real-world urban environment

Experiment Setup: BLE Discovery

Test environment

Mobile Scanners Devices

Test Setup

- Residential street environment
- 6 KMB devices Mobile Scanners
- 6 Test Settings
- Drive-by experiment at 30km/h

Metrics:

- a distance at which a first discovery of a BLE object was recorded
- a number of successfully received packets with known MAC address in a given time

	Test Parameters	
	scanWindow (ms)	scanInterval (ms)
Setting1	16	16
Setting2	48	64
Setting3	80	80
Setting4	160	160
Setting5	240	240
Setting6	320	320

6

Experiment Setup: LpWAN

Parameter	Setting 1	Setting 2	Setting 3	Setting 4
Modulation	LoRa, SF12	LoRa, SF9	Lora, SF7	2-FSK
Bandwidth	125KHz	125KHz	125KHz	20KHz
Output power	14 dBm	14 dBm	14 dBm	14 dBm
Channel	G3 869.5MHz	G3 869.5MHz	G3 869.5MHz	G3 869.5MH
Preamble	8	8	8	8
Payload	54 Bytes	54 Bytes	54 Bytes	54 Bytes
Code Rate	4/5	4/5	4/5	1
Bit rate	292 bps	1750 bps	5470 bps	9600 bps
Time on air	2438 ms	428 ms	162 ms	56 ms
Symbol time	32 ms	4.6 ms	1.4 ms	0.8 ms
Sensitivity	-137 dBm	-130dBm	-124 dBm	-105 dBm

Test Setup

- City of Things Antwerp testbed 10 outdoor Nodes
 - *LoS*: Nodes 2, 4, 20 33, 35 and 36
 - <u>Non-LoS</u>: Nodes 15, 18, 21 and 27
- Drive-by experiment at 5 and 20km/h
- Sub-1 GHz technologies: LoRa and 2-FSK

Metrics:

 an effective communication range as a function of PHY setting and velocity

7

WWW.FED4FIRE.EU

Experiment Results

BLE discovery

Probability density functions (PDF) of the distance at the first discovery

Number of received advertising PDUs

Outcomes:

- All settings provided objects detection
- Setting1 has close to one probability of discovering BLE objects further 20 meters
- Setting1 provided best performance in PDUs discovery

9

LpWAN (1/2)

Node21

Outcomes:

- City is a challenging environment for LpWAN
- None of the Gateways provided 1000m range
- Difference in LoS and non-Los cases up to 60-70%
- Low-rate settings are not suitable due to EU duty cycle limits

High rate settings at 15m gateway installation

Path loss model 5m vs 15m antenna installation

Outcomes:

- 5- vs 15- m antenna installation ~30% improvement
- · LoS and clear Fresnel zone are essential
- Delivery control to improve PDR and range
- SF7 and FSK best options to meet EU regulations
- No communication degradation at velocities <= 30km/h

Business Impact

- Practical knowledge in features and limitations of various LpWAN technologies
- Reinforced our expertise and positioning in delivery new IoT solutions
- Expand our offering to the new markets

HOW DID FED4FIRE HELP US?

- Practical Research outputs for dissemination
- Time and resources reduction to run real-life experiment

WHY DID WE COME TO FED4FIRE?

- Fed4Fire offers versatile environment and set of tools that perfectly matches to our R&D requirements
- Fed4Fire enables us to test various IoT interfaces in realistic environment

Feedback

Fed4FIRE Testbed used:

City of Things Antwerp testbed (imec) – 10 nodes

Fed4FIRE tools used:

• jFed

Other tools were provided by us e.g. 6 KMB GPS devices, 4 mobile LpWAN modules

Added value of Fed4FIRE

The most important added value of Fed4Fire:

- Realistic environment for RF experiments offered by City of Things Antwerp testbed (imec);
- Documentation and support to get started experiments
- Ease of experiments setup
- Diversity of resources

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU