

GOALS

• Assess experimentally the scalability of our blockchain-based, digital solution for the management of education certificates

- To design an experiment for assessing the scalability of our solution using Grid'5000
- To package the existing GoldenOwl software stack to easily and quickly deploy instances and execute tests in an automated way
- To perform scalability tests of GoldenOwl on Grid'5000 and to collect the relevant experimental data;
- To analyse the experimental data and understand bottlenecks

What we need:

• A cloud-in-vitro: realistic yet controlled environment (important for benchmarking)

CHALLENGES

- Access to large-scale infrastructure: not economically feasible otherwise for the company
- Access to knowledge: documentation & facility expertise
- Set of tools for (partially) automating experiments

DEMO SETUP

- Grid'5000 as experimental facility
- Enoslib & Ansible for experiment automation

- CPU usage is not influenced by the number of nodes but is influenced by operation per second rate
- The software is not ready to scale to a really high number of nodes
- Network traffic increase with number of nodes potential bottleneck in terms of unit economics
- Memory usage is stable
- Latency decreases when the operation rate increases
- Latency increases when the number of node increases superlinear, due to consensus protocol execution time
- The initial ledger size does not influence the latency

MORE RESULTS

		Experiment-1	Experiment-2	Experiment-3	Experiment-4	Experiment-5	Experiment-6	Experiment-7	Experiment-8
Opera	tion	Certificate Registration	Certificate Registration	Certificate Revocation	Certificate Revocation	Certificate Verification	Certificate Verification	Listing Certificates	Listing Certificates
Numb nod		2, 10, 20, 50	10	2, 10, 20, 50	10	2	2	2	2
Opera rate secc	per	100	1, 10, 100, 1000	100	1, 10, 100, 1000	1, 10, 100, 1000	100	1, 10, 100, 1000	100
Initial le siz	-	100	100	10000	10000	100	100, 1000, 10000	100	100, 1000, 1000

POST MORTEM

CONCLUSIONS

Main value: identification of the scalability bottlenecks of our current implementation

Other values perceived:

- ability to run experiments in a distributed, large-scale setting
- knowledge of a set of tools for easing/automating deployment and data collection (in particular Enoslib)
- Tackle the identified scalability issues → (Technical) product development roadmap
 - •4-5 months of time
 - •10-12PMs of effort estimated
- Do it in an experimentally-driven, agile fashion: quick build/deploy/measure loops
- Will keep on doing it on Fed4FIRE+: GoldenOwl2.0