?
o e

FEDZFIRE

Tarek MENOUER and Patrice DARMON

Kubernetes Container Scheduling Stratec

KCSS Umanis

BEYOND DATA

Umanis Research & Innovation

 The KCSS Is proposed to optimize the scheduling of several
containers submitted online by users. The goal is to improve the
performance in terms of computing time, power consumption and
the quality of services of the applications in the containers as much
as possible.

NOVELTY

 The novelty of the KCSS consist to select for each newly submitted
container the node that has a good compromise between hybrid
criteria related to the user needs and the state of the cloud
Infrastructure.

PRINCIPLE

dApply the multicriteria Technique for Order of Preference by
Similarity to ldeal Solution (TOPSIS) algorithm
dChoose the node that has a good compromise between six criteria:

» Duration of transmitting the image selected by the user on
the container;

» Number of available CPUs in each node;

» Size of available memory in each node;

» Size of the avallable storage disk in each node;
» Power consumption of each node;

» Number of running containers in each node.

Online submission with frequency of 5 seconds Online submission with frequency of 50 seconds

765

TOPSIS ALGORITHM

4 Fil
CO
va

a Decision Matrix (DM) of n lines (number of nodes) and ¢
umns (number of criteria). Each value f;; in DM represents the
ue of the node n; In criterion j.

Calculate the Normalized Decision Matrix (NDM). The normalized
value r;; Is determined as following:

rij:ﬁj/\/Z?zlﬁ-?, fori=1,..,nandj=1,..,c.

dCalculate the Weighted Normalized Decision Matrix (WNDM). The
weighted normalized value v;;is determined as following:

vii = wixr;fori=1,...,nand|=1,..,cC.
w;is the weight of the j** criterion, and the X¢_; w; = 1.

dDetermine the best (4™) and the worst (47) solutions.
At ={v], .., v} A ={vy, ..., v }
={(max(v;;|i=1, .., n)| j €I"), ={(min(v;;|i=1, .., n)| j €TI"),
(min(v;;li=1, .., n)| j €1")} (max(v;;]i=1, ..., n)| j € I")}

I' is associated to the criteria having the positive impact, and I"' is
associated to the criteria having the negative impact.

dCalculate the Separation Measures (SM), using the n-dimensional
Euclidean distance. The separation of each node from the best
solution is given by the SM*formula. The separation of each
node from the worst solution is given by the following SM~ formula.

SM;

C — N
\ iz1(vij — v;)2 ,fori=1,...,n

SM;" =

C + S
J=1(UU - U])2 ’ fOI‘l — 1, ...,n

\
Calculate the Relative Closeness (RC) to the best solution. For
each node n;, the R(; is defined by the following RC; formula.

RC; = SM; /(SM;" + SM;), fori=1,...,n.

35200

760

35000

55 -

50 -

T45 -

Time (s)
Time (s)

T40

T35

T30 -

KCSS

T25

Default Kubernetes scheduling strategy

Default Kubernetes scheduling strategy KCSS

Comparison between the computing
time (makespan) obtained by the KCSS
and the default kubernetes strategy to

schedule 45 containers submitted
online with frequency of 5 seconds.

__B

Comparison between the computing
time (makespan) obtained by the KCSS
and the default kubernetes strategy to

schedule 45 containers submitted
online with frequency of 50 seconds.

Power consumption (Watt)

EXPERIMENTAL EVALUATION

Online submission with frequency of 50 seconds

43000

Online submission with frequency of 5 seconds

42000 -

34600 -

34200 -

33800 -

33600 -

33400

Comparison between the power
consumption obtained by the KCSS
and the default kubernetes strategy
to schedule 45 containers submitted
online with frequency of 5 seconds.

41000 -

Power consumption (Watt)

__ B

KCSS

37000 -

Default Kubernetes scheduling strategy

___ |

KCSS

Default Kubernetes scheduling strategy

Comparison between the power
consumption obtained by the KCSS
and the default kubernetes strategy to
schedule 45 containers submitted
online with frequency of 50 seconds.

RESULT

 Experiments with KCSS are performed in Virtual Wall testbed.

 In our experimental environment, a speedup varied between 2%
and 8% is obtained with KCSS in terms of:

» Computing time (makespan);
» Power consumption.

CONCLUSION

d KCSS select for each container the node with a good compromise
between several criteria.

d KCSS is implemented in GO language inside Kubernetes with a
minimum of change.

Umanis

BEYOND DATA

