

Service Oriented Interactive 3D Digital Twin Measuremens (SOI-TWIN)

Fed4Fire Industry 4.0 Experiments

Interactive Cloud Services

Folker Schamel

Spinor GmbH

Experiment Description

Background and Motivation

INTERACTIVE MEDIA

- Instant availability anytime anywhere (no loading times)
- Simple content upgrading
- Live media integration
- Performance
- Device independency

Requires suitable technology strategy: Cloud first instead of lift & shift

MARKETS

- Industry 4.0
 - 3D
 - Natural and visual UIs
- Retail / Configurators in the Configure Price Quote (CPQ) industry:
 - Visual and interactive
- Training, education and entertainment, etc.

Concepts and Objectives

FED4FIRE

CORE GOALS

Functional and performance analyses of interactive media service deployments in cloud infrastructures

Based on Service Oriented Interactive Media Architectures

SPECIAL ASPECT

- High performance access to GPUs from within WMs running Window.
 (OS choice due to of WMF for hires video, DirectX etc.)
- Selected initial performance measurements of service oriented interactive media deployment architectures

Experiment Setup

SOIM DEPLOYMENT

- Virtual Wall of imec
 - gpunodes n083-01, n083-03 - n083-10 (dependent on availability)
- Multi-user service oriented interactive media architecture
- WM-based
 - Windows Server 2012 WM on Ubuntu 16.04

TESTING & MEASUREMENTS

- Automated packaging, image creation, deployment, startup
- Functional testing of service deployments
- Performance testing of service deployments and startup

Project Results

Failure of Usable GPU Access

LESSON LEARNED: CONTAINERS INTEAD OF VMS

- Our service was running successfully within windows WM hosted by Linux WMs on the Virtual Wall.
- But no satisfactory access to the GPU of the gpunodes.
 - Only basic fall-back drivers, which are not suitable for highperformance interactive rendering and media applications
 - Analysis: This is a general challenge of VMs (not OS specific)
- Conclusions:
 - Tighter integration of base system and application container needed
 - Switch to containers (e.g. Windows containers)

Deployment Performance

RESULTS: IMPORTANCE OF AUTOMATIZATION AND TRAFFIC

- Automatization of packaging and deployment works very well.
 - Python based & shell scripts
 - Virtual Wall and Fed4FIRE connection and tunnel management
 - Automated SSH
 - Abstraction layers: Content, packaging, transfer, startup, logging
 - Essential for rapid workflow and heterogeneous application pool
- Brute-force upload is slower than expected: An hour and more
 - Specific for our use cases. This is what we want to know about.
 - Incremental updates hard to do on image base and breaks isolation when doing on content package base

Startup Time Measurements

RESULTS: DEPLOYMENT OUTSHADOWS STARTUP

- Image upload: 1:20 1:30 hours
- Node availability wait times: Typically 12 25 minutes
- WM startup times: 1:20 1:50 minutes
- Service executable startup time: 12 14 seconds
- Service content loading time (base & specific): 2:15 2:33 min.
- Shutdown: 35 50 seconds (not really relevant in practice)
- Conclusion: Sharing data for elasticity of multiple applications
- VMs not optimal: Choice between different images vs. separate content management → Lesson learned: Containers?
 - WWW.FED4FIRE.EU

9

Business Impact

Choice of Fed4FIRE

STRATEGICAL ASPECTS

Preference of research oriented partners

- Developing deeper technology for competitive advantage
- Know-how ingest
- Recruiting of talents Fed4FIRE is the leading platform for such testbeds

ECONOMIC ASPECTS

- Lack of own cloud infrastructure
- GPUs on commercial clouds are expensive and costs are partly unpredictability (for R&D over multiple months)

Commercial Benefit of New Information

FUNCTIONAL

- New knowledge of nontrivial deployments of GPUbased applications on scalable infrastructures
- New knowledge of nontrivial node management and orchestration

PERFORMANCE

- Performance
 characteristica
 - For our specific use cases and application data
- Basis for use case business analyses and pitches
 - Especially service oriented architectures vs. lift & shift
- → Relevant for commercial battlefield for cloud based interactive media applications

Impact on Technology Strategy

IMPACT ON TECH STRATEGY

Experiments had large impact on future technology strategy:

- Leads to containerization
 - Very tricky and far-reaching consequences due to highperformance Windows GPU access
 - Better for elasticity of multiple applications

IMPACT ON FUTURE R&D

- API and architecture design for multi-layered deployment automatization
- Architecture design for smarter orchestration
 - Combination of own tech, Kubernetes, VPNs
- Leads to new focus on multi-cloud

Exemplary Benefits in Specific Markets

POSITIONING IN AUTOMOTIVE

Specific pitch in automotive

- Addressing specific problems of product configurators
- Solid business arguments based on numbers of Fed4FIRE experiments (SOIM vs lift & shift for interactive rendering apps)

NEW COOPERATION

New research project cooperation with University of Münster

Would not have been
 possible without the
 deployment lessons
 learned from our
 experiments on fed4FIRE

Feedback

Node and Image Management

FED4FIRE

VERY USEFUL. MINOR ISSUES.

- Node management worked very well.
- Image management system worked very well.
- Relevant nodes are often not available
 → "Popular" nodes are used by many researchers
- Issues:
 - Sometimes unclear error message, e.g."Node mapping precheck failed!"
 - Launching a Physical Node with Windows (by changing the disk_image urn to a corresponding windows urn) on the n083-01 node failed: Never became ready, waited for 1h.

Networking Architectures

DIRECT NODE ACCESS FOR AUTOMATISATION

- Useful tools for manual access
 - E.g. the nice shell access feature
- But we needed workarounds for full automatization
 - Automated extraction of gateway-ip via ssh trick only.
 - Software seems to be mainly focused on manual access.
 - \rightarrow More focus on automated access would be useful.
 - This might be low hanging fruits: Easy to do, but very beneficial.
- We needed workarounds for public IPv4 access of nodes
 - Direct access would be nice
 - Although we understand that this is not that easy

Hardware & OSes

GREAT LINUX SUPPORT. SAME FOR WINDOWS WOULD BE NICE.

- Yes, Linux is still the main choice for cloud applications. But Windows is getting more and more important for interactive media applications.
 - Superior hardware-accelerated media features: WMF, DirectX
- GPUs are getting more and more important.
 - \rightarrow More GPU nodes would be very useful
 - Media application and rendering (as our use cases)
 - Deep learning

Isolation, VMs, containers, orchestration

WISH LIST

- Support for Windows docker containers
 - For many good reasons containers are replacing WMs
 - Windows containers on physical Windows machines
- Kubernetes support
 - Linux and Windows nodes
 - No need to provide Kubernetes. Own installation is most useful.
 - Own choice of specific Kubernetes versions.
 - More control (e.g. custom Kubernetes build for device plugin support on Windows nodes)

QUESTIONS ABOUT SOI-TWIN ?

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU