

Dimitris Katris, Project Manager

VIRTUAL REVIEW FEC9

Zoom, 28.05.2021

Review Open Call 8 – OptiPLANT Experiment

The Company

intellia

MLSpecialists & Data Scientists

Ø

Research awards in the interpretation of complex data

Est. in 2016 \bullet

- Data-driven start-up focusing on AI / ML ۲
- Large Portfolio in industrial collaborations ullet
- Predictive maintenance on \bullet
 - Ship machinery \bullet
 - **Material flow logistics** \bullet

Host Testbed: Tengu

EVENT CORRELATION AND ROOT-CAUSE ANALYSIS FOR OPTIMISED PREDICTIVE MAINTENANCE

The Problem (or the Business Motivation)

REACTIVE MAINTENANCE COSTS A LOT!

80% of maintenance time is spent reacting to issues rather than proactively preventing them

37% lost production time

Estimated loss — Up to 250.000 Euros per hour

The OptiPLANT Concept

OptiPLANT aims to validate predictive maintenance solution using a big data architecture

Objectives

- Stress test the performance of event correlation schemes in real-time
- Optimised predictive maintenance through refined root-cause analytics
- Experiment with real-time reconfiguration of the algorithms
- Identify a set of best practices for industrial predictive maintenance

Experiment Set-up

FED4FIRE

Software

- **Minio** object storage to store OptiPLANT data.
- Apache Spark
 - SparkCore for processing
 - SparkStreaming for real-time streaming
 - SparkUI for monitoring
- **PySpark** as a Python API for SPARK
- Jupyter for easy and quick prototyping

Resources

- We didn't have to deal with actual resources making it easier for the experimenter
- Resources were organised in containers orchestrated by Kubernetes
- The experiment used 200GBs of real datasets in the form of sensor vectors (31 monitored variables + timestamp)
- Batch training, testing, real-time predictions (online)
- 6 WWW.FED4FIRE.EU

Events Lifecycle in OptiPLANT FED4 FIRE Event streams Sensor streams e_2 e1 e3 S1 0.2 > 150.0 > 0.12 > 0.15 ` • 0 • 0 detection S2 Event -250.0 >> 8.0 >> 248.3 >> 251.0 > • 0 • 1 • 0 • 0 • 1 S3 23.0 21.4 342.1 22.9 • 0 • 0 • 0 Event correlation $p \in [0..1]$ pattern **e**₂**e**₃ 0.8 $e_2 \wedge e_3 \rightarrow e_1$ rediction Event Filtering Event 0.6 $e_1 \rightarrow e_2$ e₁e₂ 0 0.5 $e_2 \rightarrow e_3$ e3 Probabilistic Dependency Temporal Reasoning structure WWW.FED4FIRE.EU

Stepwise event correlation based on Markov chains

Measurements – Precision & Recall

Measurements – Hurst Exponent & Autocorrelation

Ability to identify evidences of malfunctioning behaviour

10 WWW.FED4FIRE.EU

Measurements - Hurst Exponent & Autocorrelation

11 WWW.FED4FIRE.EU

The Market Opportunity

1. Source: General Manufacturing Global Market Report 2020-30 2. Source: IoT Analytics Research 2021

€ 800 Bn+

€ 8.2 Bn

Global market of manufacturing industries¹ Total market for predictive maintenance²

€ 500 Mn

Estimated predictive maintenance costs for manufacturing SMEs

Business Plan

Training cost	Charge
< 1GB	20€
< 100GB	200€
< 500GB	1000€
> 500GB	Under request

Prediction's cost (per month)	Charge (per prediction)
First 1000	Free
1001 to 100,000	0.04€
100,001 to 200,000	0.03€
200,001+	0.02€

Burn rate: 10K€/month Beta users: 1 company Sales: 200€ + 2K€/month

Go to market strategy: build on strategic partnerships

Financial Projection

Why we selected FED4FIRE?

AND HOW FED4FIRE HELPED US TO GROW!

- Due to the lack of resources most of the times algorithms are tested only through simulations
- No big data tools easily available for SMEs
- Difficulty to access appropriate infrastructure for Big Data
- Setting up Big Data tools installations (e.g., Storm / Spark / Hadoop) would be a time & money overkill for an SME

Added Value for Fed4FIRE

- Validation of a real business-driven scenario
- Test of innovative big data algorithms with great impact on research
- Tengu was tested with a huge amount of data and with realtime needs
- Connection with the industrial sector
- Paper for IEEE WiMob 2021

DEMO VIDEO

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU