

# ANGEL An Agile IoT Interoperability Platform



# GOALS

Making IoT data interoperable, homogeneous, ready for exploitation!

- Assess the effectiveness of using on top of an SDN domain, a Deep Packet Inspection (vDPI) function combined with virtual functions that map IoT protocols to UDP in order to provide an agile platform for IoT interoperability
- Design and develop an SDN-app that provides an agile logic in the automatic provision of IoT interoperability on top of IoT nodes/sensors, based on the automatic sensing of the IoT protocols by the vDPI and mapping of each IoT data flow to UDP data protocol
- Abstract, via the INFOLYSiS interoperable IoT vGW, the IoT sensors' control plane by exploiting the deployed and instantiated mapping VNFs on top of the OFELIA/i2cat island for achieving IoT interoperability

# CHALLENGES

- The IoT interoperability challenge within the framework of 5G using SDN/NFV technologies
- Dealing efficiently and cost-effectively with a mix of IoT streams such as MQTT, CoAP or HTTP IoT protocol data, which a typical IoT GateWay (GW) cannot handle
- Achieving smooth integration of the IoT devices and their services into one networked system under a single data protocol
- Lack of an agile infrastructure, leading to a simpler configuration of the network, which is suitable for IoT interoperability goals
- Ensure operational efficiency and no data loss via the use of SDN/NFV and vDPI technologies for offering IoT Interoperable data

## **DEMO SETUP**





ANGEL experiment successfully met and documented the following results:

- □ Automatic sensing by the vDPI of CoAP, MQTT, HTTP IoT protocols
- □ Success rate >95% in the SDN-based traffic steering to mapping VNFs
- □ Mapping of each IoT data flow to UDP data protocol with zero packet loss
- Successful self-organization of the ANGEL platform for the 4 different protocol combinations (CoAP-MQTT, CoAP-HTTP, MQTT-HTTP, CoAP-MQTT-HTTP)
- Design and development of an SDN-app suitable for providing an automatic way of IoT interoperability for 3 different data protocols
- Provision of SDN-app capable of adapting on the fly, once new IoT data flows have been detected with a delay <2 sec</p>
- Successful service chaining of each mapping function and the vDPI of the ANGEL platform for the 4 different protocol combinations.

### **MORE RESULTS**

| +1 COAP (port | 5777) Tot Data discovered and redirected to CoAPMan |
|---------------|-----------------------------------------------------|
| +1 HTTP (port | 80) for Data discovered and redirected to HTTPMap   |
|               |                                                     |
| +] COAP (port | 5///) Iol Data discovered and redirected to CoAPMap |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] CoAP (port | 5777) IoT Data discovered and redirected to CoAPMap |
| +] MQTT (port | 1883) IoT Data discovered and redirected to MQTTMap |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] MQTT (port | 1883) IoT Data discovered and redirected to MQTTMap |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] CoAP (port | 5777) IoT Data discovered and redirected to CoAPMap |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] MOTT (port | 1883) IoT Data discovered and redirected to MOTTMap |
| +1 MOTT (port | 1883) IoT Data discovered and redirected to MOTIMap |
| 1 UTTO (port  | 20) Tot Date discovered and redirected to UTTOMAS   |
| +J HITP (port | 80) for bata discovered and redirected to Hilphap   |
| +] CoAP (port | 5777) IoT Data discovered and redirected to CoAPMap |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] CoAP (port | 5777) IoT Data discovered and redirected to CoAPMap |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| +] HTTP (port | 80) IoT Data discovered and redirected to HTTPMap   |
| • • • • •     |                                                     |
|               |                                                     |

#### Fig. 1: vDPI detection of CoAP, MQTT & HTTP

| #  | Interface                                                              | RX Rate                                                      | RX                  | #         | TX Rate                | ТХ            | #      |
|----|------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|-----------|------------------------|---------------|--------|
| ТΡ | MapMarch (source: lo                                                   | cal)                                                         |                     |           |                        |               |        |
| 0  | lo                                                                     | 0.00B                                                        |                     | 0         | 0.00B                  |               | 0      |
| 1  | eth0                                                                   | 177.00B                                                      |                     | 3         | 673.00B                |               | 0      |
| 2  | eth1                                                                   | 330.00B                                                      |                     | 3         | 278.00B                |               | 2      |
| 3  | eth2                                                                   | 0.00B                                                        |                     | 0         | 0.00B                  |               | 0      |
| 4  | eth1.3142                                                              | 255.00B                                                      |                     | 3         | 278.00B                |               | 2      |
| 5  | eth2.3142                                                              | 0.00B                                                        |                     | 0         | 0.00B                  |               | 0      |
|    | 2.38<br>1.98<br>1.59*<br>0.79*.**<br>0.40 :*.**:**.<br>1 5 10 1<br>KiB | **.<br>**.**<br>**.*.***<br>*.*.***.****.***<br>5 20 25 30 3 | *<br>*<br>*<br>5 4( | ****<br>8 | ***<br>****<br>5 50 55 | <br><br>      | .03%]  |
|    | 2.71                                                                   | *                                                            | *                   | ***       | ****                   | ·····<br>···· | . 03%] |

Fig. 4: HTTP mapping

| *] | Received | UDP | data: | t586:0:COAP:illuminance                |
|----|----------|-----|-------|----------------------------------------|
| *] | Received | UDP | data: | f3155:46:HTTP:temperatureambient       |
| *] | Received | UDP | data: | f3070:200:HTTP:temperatureambient      |
| *] | Received | UDP | data: | f3001:17.9:HTTP:temperatureambient     |
| *] | Received | UDP | data: | f3042:20.5:HTTP:temperatureambient     |
| *] | Received | UDP | data: | f3041:200:HTTP:temperatureambient      |
| *] | Received | UDP | data: | f3155:13:MQTT:relativehumidity         |
| *] | Received | UDP | data: | f3042:51:MQTT:relativehumidity         |
| *] | Received | UDP | data: | f3001:39:MQTT:relativehumidity         |
| *] | Received | UDP | data: | f3041:200:MQTT:relativehumidity        |
| *] | Received | UDP | data: | f3070:200:MQTT:relativehumidity        |
| *] | Received | UDP | data: | f3022:20:HTTP:temperatureambient       |
| *] | Received | UDP | data: | f3006:17.7:HTTP:temperatureambient     |
| *] | Received | UDP | data: | f3011:19:HTTP:temperatureambient       |
| *] | Received | UDP | data: | t3248:0:HTTP:rainfall                  |
| *] | Received | UDP | data: | f3011:56:MQTT:relativehumidity         |
| *] | Received | UDP | data: | t3248:-39.7:HTTP:temperatureambient    |
| *] | Received | UDP | data: | f3006:58:MQTT:relativehumidity         |
| *] | Received | UDP | data: | f3022:50:MQTT:relativehumidity         |
| *] | Received | UDP | data: | t3248:0:COAP:windspeed                 |
| *] | Received | UDP | data: | t358:20.06:HTTP:temperatureambient     |
| *] | Received | UDP | data: | t358:0:COAP:illuminance                |
| *] | Received | UDP | data: | f3077:19.1:HTTP:temperatureambient     |
| *] | Received | UDP | data: | t3248:1008.18:MQTT:atmosphericpressure |
| *] | Received | UDP | data: | t3248:-2.08:MQTT:relativehumidity      |
| *] | Received | UDP | data: | t373:17.22:HTTP:temperatureambient     |
|    |          |     |       |                                        |

Fig. 2: Interoperable UDP-based IoT data

| ŧ I   | nte | rfac  | ce   |      |    |     |     |      | RX      | Ra  | te |     |    |    | R   | X # | ŧ   |    | тх | Ra  | te |    |   |      | тх   | #    |
|-------|-----|-------|------|------|----|-----|-----|------|---------|-----|----|-----|----|----|-----|-----|-----|----|----|-----|----|----|---|------|------|------|
| PMap  | Mar | ch (  | (sou | irce | :  | loc | al) |      |         |     |    |     |    |    |     |     |     |    |    | _   |    |    |   |      |      |      |
| 0 10  | 0   |       |      |      |    |     |     |      | (       | 0.0 | ØB |     |    |    |     | 6   | 3   |    |    | 0.0 | ØB |    |   |      |      | 0    |
| l et  | thØ |       |      |      |    |     |     |      | 15      | 7.0 | ØB |     |    |    |     | 3   | 3   |    | 57 | 0.0 | ØB |    |   |      |      | 1    |
| e e   | th1 |       |      |      |    |     |     |      | 13      | 7.0 | ØB |     |    |    |     | 2   | 2   |    | 12 | 3.0 | ØB |    |   |      |      | 2    |
| e e   | th2 |       |      |      |    |     |     |      | 1       | 0.0 | ØB |     |    |    |     | 6   | 3   |    |    | 0.0 | ØB |    |   |      |      | 0    |
| e     | th1 | . 314 | 12   |      |    |     |     |      | 13      | 7.0 | ØB |     |    |    |     | 2   | 2   |    | 12 | 3.0 | ØB |    |   |      |      | 2    |
| i e   | th2 | . 314 | 12   |      |    |     |     |      | 1       | 0.0 | ØB |     |    |    |     | 6   | 3   |    |    | 0.0 | ØB |    |   |      |      | 0    |
| В     |     |       |      |      |    |     |     |      |         |     |    |     |    |    |     |     |     |    |    |     |    |    |   |      |      |      |
| 582.0 | 00  |       |      |      |    |     |     |      |         |     |    |     |    |    |     |     |     |    |    | .*. |    |    |   |      |      |      |
| 485.0 | 00  |       |      |      |    |     |     |      |         |     |    | . * |    |    |     |     |     |    |    | .*. |    |    |   |      |      |      |
| 388.0 | 00  |       |      |      |    |     |     |      |         |     |    | . * |    |    |     |     |     |    |    | .*. |    |    |   |      |      |      |
| 291.0 | 00  |       |      |      | .* |     | *   |      | · · · · | *.  |    | *   |    | *  |     | *   |     |    |    | .*. |    |    |   |      |      |      |
| 194.0 | 00  |       |      |      | ** |     | *   |      |         | *.  |    | . * |    | *  |     | *   |     |    |    | .*. |    |    |   |      |      |      |
| 97.0  | 00  | ****  | *    | *    | ** |     | *   | . ** | ***     | **  |    | *** | ** | *  | **  | *   |     | *  |    | *** |    | .* |   |      | [-0. | 02%] |
|       |     | 1     | 5    | 10   | 1  | 15  |     | 20   | 2       | 25  | 3  | 30  |    | 35 |     | 40  |     | 45 |    | 50  | 5  | 55 | e | 50 : | s    |      |
| B     |     |       |      |      |    |     |     |      |         |     |    |     |    |    |     |     |     |    |    |     |    |    |   |      |      |      |
| 360.0 | 00  |       |      |      |    |     |     |      |         |     |    |     |    |    | ••• |     | ••  |    | •• | .*. |    |    |   |      |      |      |
| 300.0 | 00  |       |      |      |    |     |     |      |         |     |    |     |    |    |     |     |     |    |    | .*. |    |    |   |      |      |      |
| 240.0 | 00  |       |      |      | .* |     |     |      |         | *.  |    | . * |    |    |     |     |     |    |    | .*. |    |    |   |      |      |      |
| 180.0 | 00  |       |      |      | .* |     |     |      |         | *.  |    | . * |    |    |     |     | • • |    |    | .*. |    |    |   |      |      |      |
| 120.0 | 00  | ****  | *    |      | ** |     |     |      | **.     | *.  | >  | **  | .* |    | *.  |     |     |    |    | *** |    |    |   |      |      |      |
| 60.0  | 00  | ****  |      |      | ** |     |     |      | ołoł.   | *.  |    | (a) | .* |    | *.  |     | ••  |    |    | *** |    |    |   |      | [-0. | 02%] |
|       |     | 1     | 5    | 10   |    | 15  |     | 20   | 2       | 25  | 3  | 30  |    | 35 |     | 40  |     | 45 |    | 50  | 5  | 55 | e | 50   | s    |      |

Fig. 5: CoAP mapping



### Fig. 3: INFOLYSiS Dashboard: Real-time experimental VNFs topology

| **  | Interface                                             | RX Rate                                | RX #                  | TX Rate                                | TX #                             |
|-----|-------------------------------------------------------|----------------------------------------|-----------------------|----------------------------------------|----------------------------------|
| QTT | MapMarch (source: l                                   | ocal)                                  |                       |                                        |                                  |
| 0   | lo                                                    | 221.00B                                | 3                     | 221.00B                                | 3                                |
| 1   | eth0                                                  | 136.00B                                | 3                     | 594.00B                                | 1                                |
| 2   | eth1                                                  | 758.00B                                | 11                    | 872.00B                                | 12                               |
| 3   | eth2                                                  | 0.00B                                  | 0                     | 0.00B                                  | 0                                |
| 4   | eth1.3142                                             | 758.00B                                | 11                    | 872.00B                                | 12                               |
| 5   | eth2.3142                                             | 0.00B                                  | 0                     | 0.00B                                  | 0                                |
|     | 1.10 .***.<br>0.74 .***.<br>0.37 .*::.*.**:<br>1 5 10 |                                        | ****<br>****<br>35 40 | ************************************** | *<br>*.*<br>*.* [-0.02%]<br>60 s |
| ×   | KIB                                                   |                                        |                       |                                        |                                  |
|     | 1.98*.                                                |                                        |                       |                                        |                                  |
|     | 1 22 *                                                |                                        | ***                   |                                        |                                  |
|     | 1.52 .***.<br>0.00 *                                  |                                        | ****                  | ****                                   |                                  |
|     | 0.55                                                  | ·····                                  | ***                   | ****                                   |                                  |
|     | 0.00                                                  | ···· · · · · · · · · · · · · · · · · · | ***                   | ***                                    | + + [-0 02%]                     |
|     | 0.33                                                  |                                        |                       |                                        | [-0.028]                         |
|     | 1 5 10                                                | 15 20 25 20                            | 25 40                 |                                        | EAC                              |

Fig. 6: MQTT mapping

## CONCLUSIONS

## **FEEDBACK TO Fed4FIRE+**

- ANGEL experiment highlighted the opportunity of IoT interoperability provision by the forthcoming 5G networks
- □ Researched IoT interoperability through the agility provided by SDN, NFV and DPI,
- Demonstrated the intelligence to analyze and handle heterogeneous IoT data flows in real-time
- Combined the agility of vDPI function with the flexibility of mapping protocol functions - VNFs (i.e. CoAP, MQTT, HTTP to generic UDP data traffic)
- Complete and operational OpenFlow/Cloud testbed for experimenters
- Diversity of available resources based on each experimenter's requirements
- Out-of-the-box interoperability of different testbeds
- Easy setup and execution of the experiments
- Concise and comprehensive documentation
- □ High responsiveness of the Fed4FIRE+ team to any problem or issue raised