

How Galgus tests its prototypes on Fed4FIRE testbeds

3rd Fed4FIRE+ Open Call FEC4, Brugge (Belgium)

Dr. Victor Berrocal-Plaza

Galgus, www.galgus.net

October, 8th 2018

Outline

- Brief summary about Galgus
 - Who are we? what do we do?
 - Our products
- Why do we apply to Fed4FIRE OCs?
- How do we use Fed4FIRE testbeds?
 - Fed4FIRE tools
 - Our methodology
 - Feedback
- MAGIC project
 - Objectives
 - Some results
- Our work for future Fed4FIRE OCs

Brief summary about Galgus

- Who are we? What do we do?
- Galgus is a highly specialized SME focused on the design of smart wireless solutions
 - We are developing our multi-platform embedded software for Wi-Fi APs: CHT (Cognitive Hotspot Technology[™])

Our vision:

You decide the AP or wireless router that satisfies your specific requirements, and **CHT** release its true potential with a simple software upgrade

- CHT transforms Wi-Fi APs into smart devices that
 - Sense their environment
 - Share information with each other
 - Collaborate among them in order to improve connectivity, performance and the end-user QoS
- **CHT** is a fully distributed and decentralized technology → every AP is an intelligent agent

Brief summary about Galgus

• Our products

- A multi-platform embedded software for Wi-Fi APs
- We only use information available in the Operating System's user space of the AP:
 - SNIR, RSSI, MCS, number of transmitted packets...
- This way:
 - We can provide a plug&play software
 - We do not need to modify the firmware of the AP
 - We can install our solutions in practically any AP (e.g. APs with a Linux distro)
 - We do not need to install proprietary software in Wi-Fi stations

Brief summary about Galgus

• Our products

Cloud Manager

 A tool designed to manage, configure, monitor, upgrade and troubleshoot all the WiFi APs

Why do we apply to Fed4FIRE OCs?

Our main motivation is to be able to evaluate the behavior and the performance of our algorithms in the WiLab testbed

Galgus laboratory	WiLab testbed 🔊 iMinds
✗ It is difficult to replicate results because the radioelectric spectrum is shared with all the wireless networks and devices in our surrounding	 This laboratory provides an environment free of external interference

X We cannot analyze the behaviour of some of our algorithms in an accurate way because our laboratory lacks of a mobility testbed

X We have limit of space in our installations

WiLab provides a very useful and versatile mobility testbed wherein you can get the location of each node in real time and configure the path and speed of each mobile node

- ✓ WiFi devices are deployed in a 66x20,5 m² open room and in three floors of the iGent building
- The funding is also a motivation for us

6

Why do we apply to Fed4FIRE OCs?

• Thanks to our experiments within a Fed4FIRE OC, we have been able to

Technical impact	I Business impact
- speed-up the testing of our algorithms	- speed-up the time-to-market of our solutions
 gain new expertise and improve our laboratory scripts in consequence 	 compete in public/private tenders that require these new solutions
- extract very useful information to define the	- be more competitive in the market
improvement guidelines of our algorithms	- fulfill the acquired compromise with our customers
	- increase our sells expectations

• All of these benefits without investing our own economic resources!

How do we use Fed4FIRE testbeds?

- Fed4FIRE tools
- We mainly use two Fed4FIRE tools

1) The jFed experimenter GUI to initiate nodes with our custom URNs within the WiLab testbed

2) The robot dashboard to configure and control mobile nodes

8

How do we use Fed4FIRE testbeds?

• Feedback

	Positive remarks	Remarks for possible improvements
jFed experimenter GUI	 Very easy to use Possibility of create custom URNs Fast experiment initialization thanks to the use of XML (RSpec) 	- Reduce the RAM memory consumption
Robot control dashboard	 Very versatile tool where you can configure paths and speeds of every mobile node It provides the location of each mobile node in real time (web page) 	- Provide a user guide (.pdf) with all the possibilities of this tool
iMinds WiLab testbed	 A controlled radioelectric environment Many WiFi devices, including mobile nodes It provides a very veratile mobility testbed, without which we would have been unable to analyze the behaviour of our localization algorithm 	- Provide a graphical monitoring tool to show the radioelectric state of the testbed in real time
	 The provision of KVMs and LEDE speeded- up the integration of our technology 	

11 WWW.FED4FIRE.EU

MAGIC project

• Objectives

Analyze the behavior and performance of our algorithms specifically designed to tackle the following Wi-Fi challenges:

1) How to dynamically adjust the AP transmission power to guarantee the expected QoS? \rightarrow TPC

3) How to jointly assign channels and channel bandwidths for a set of Wi-Fi APs? \rightarrow MO-ACA

2) How to locate and track Wi-Fi users? → LOC, PROAM

$(x, y) = f(RSSI_{AP1}, \dots, RSSI_{APn})$

Indoor location of Wi-Fi devices in our laboratory

4) How to configure and control a set of decentralised APs from a single location? \rightarrow CHT-MANAGER

MAGIC projectSome results

• Challenge 1: How to dynamically adjust the AP transmission power to guarantee the expected QoS? → Transmission Power Control (TPC)

AP: zotacB4. STA: mobile8. Traffic: videostreaming of 8Mbps

Goal: minimize Ptx without degradation of the users' Quality of Service (QoS = f(SNIR))

Algorithm operation:1) Progresive decrement of Ptx

2) Fast recovery upon detecting degradation of QoS

> 36% of power reduction without QoS degradation

	Reduction	Reduction in Ptx (%)		Throughput (Mbps)		# queue wget processes	
	mean	std	mean	std	mean	std	
with TPC	36.14	22.58	33.41	0.23	0.00	0.00	
without TPC	0.00	0.00	33.41	0.30	0.00	0.00	
p value	0.00 <	0.00 < 0.05		0.17 > 0.05			

Some results Challenge 2 1: How

• Challenge 2.1: How to locate Wi-Fi users? → LOC

Our LOC algorithm is based on a machine learning technique that only uses information gathered by the APs to estimate the location of WiFi terminals

$$(x, y) = f(RSSI_{AP1}, RSSI_{AP2}, \dots, RSSI_{APn})$$

→ We don't need additional network hardware nor proprietary software installed on WiFi STAs

Experiment with static STAs:

Even evidence to the even bills CTA at different value sities.

MAGIC project

- Some results
- Challenge 2.1: How to locate Wi-Fi users? → LOC

Our LOC algorithm is based on a machine learning technique that only uses information gathered by the APs to estimate the location of WiFi terminals

Lessons learned Challenge 1: How to dyna

MAGIC project

 Challenge 1: How to dynamically adjust the AP transmission power to guarantee the expected QoS? → Transmission Power Control (TPC)

Goal: minimize Ptx without degradation of the users' Quality of Service (QoS = f(SNIR))

37% of power reduction without QoS degradation

Algorithm operation:

- **1)** Progresive decrement of Ptx
- 2) Fast recovery upon detecting degradation of QoS

Future improvements:

- React to every slight change of QoS may make unstable our algorithm
- We will study mechanisms to filter instant changes in the QoS due to (among others):
 - Fast fading
 - Operation of the rate control algorithm (e.g. Minstrel)

Experiment with static STAs:

Future improvements:

- We will readjust our model because:

- The location error increases when increasing the number of APs

- The location error increases with the user's velocity

- The stronger (or nearest) AP dominates our formulation

Experiment with a mobile STA

e_x(cm) in E(z)

MAGIC project

- Lessons learned
- Challenge 2.1: How to locate Wi-Fi users? → LOC

FED4FIRE

Location error below 5 meters with a probability of 70%

Our work for future Fed4FIRE OCs

- User traffic classifier
- A machine learning technique designed to classify multimedia traffic
 - Live video, live radio, buffered video
 - We only catch certain features of packets (up to L4 layer) \rightarrow we don't use DPI tools

Motivation:

- Be able to discriminate multimedia traffic
 - Give more priority to this type of traffic
 - ISPs tend to modify the ToS field of IP packets

- Infer QoS degradation in the application layer (L7) and take measures in L2 layer before the user appreciates QoE degradation

Other applications:

- e As part of the LWIP system in LTE for traffic offloading
 - As part of any other system that requires of traffic discrimination

We are studying whether our system may be interesting for future Fed4FIRE Open Calls

MAGIC - F4P03-L06 -

This project has received funding from the European Union's Horizon 2020 research and innovation programme, which is co-funded by the European Commission and the Swiss State Secretariat for Education, Research and Innovation, under grant agreement No 732638.

WWW.FED4FIRE.EU