

LTE eNB Scheduler performance experiments

EXPERIMENT GOALS

- LTE eNB Scheduler experiments in the environment composed of LTE base station and multiple, simultaneously connected UE nodes
- User-oriented KPI measurement
 - for Carrier Aggregation transmission
 - in various environment conditions
- LTE eNB Scheduler testing using open-sorce software for LTE eNB/UE protocol stacks and various SDR front-end devices

EXPERIMENT SETUP

SW/HW components

- OAI eNB the branch supporting FAPI interface and CA functionality (feature-31-ff-scheduler-api)
- OAI EPC master branch at the newest release
- LTE eNB Scheduler basic and advanced algorithms
- expressMIMO2 + RF module
- 4x COTS UE with test SIM cards

 Tools: TestelDroid and aLTErnative (new ISW's product supporting LTE open-source protocol stack)

LTE eNB Scheduler

- IS-Wireless' proprietary software library providing an advanced scheduling algorithm for LTE base station
- Implemented in ANSI C (C99) using the latest industry standards for improved safety and performance
- Interacts with LTE eNB protocol stack through FAPI interface extended to support Carrier Aggregation
- LTE eNB Scheduler is going to be a part of IS-Wireless' Software-Defined RAN for 4G and 5G

Technical outcomes

- Successful deployment of LTE eNB Scheduler in cooperation with OAI and expressMIMO2
 - Carrier aggregation transmission with 2 CC
- The range of RF front-end equipment that is compatible with deployed LTE eNB successfully verified

- Additional implementation for LTE eNB Scheduler:
 - to increase the efficiency in cooperation with OAI
 - required for bug fixing
- New ideas for better OAI support within aLTErnative (some already implemented):
 - improvements of the eNB and EPC configuration procedures,
 - better support for software compilation,
 - support for the FAPI compilation, which is necessary for LTE eNB Scheduler application.

Conclusions

- 1.LTE eNB works stable, however the KPI measurements could not be performed due to many encountered issues.
- 2.LTE eNB is not yet resistant to the environment conditions it might be a good idea to repeat the experiment in more controllable environment
- 3. OAI software requires additional implementation
 - a. for EPC part in order to fully support LTE attach procedure
 - b. for eNB part in order to support single carrier transmission (feature-31-ff-scheduler-api does not support it)
- 4. The high PC performance (including features for power management, CPU frequency scaling and hyperthreading) is required to support expressMIMO2