
SDN managed Network Slicing in Mobile Backhaul
Alexander Hefele

Technische Universität Dresden
Dresden, Germany

alexander.hefele@tu-dresden.de

Jose Costa-Requena
Aalto University

Department of Communication and Networking
Espoo, Finland

jose.costa@aalto.fi

Abstract—This paper provides a solution for ultra reliable low
latency communication (URLLC) module for the 5G mobile back-
haul. This proposal considers network slicing based on Software
Defined Networking (SDN) to deploy URLLC communications.
This paper presents the design of the modules and algorithms that
implement the network slicing functionality. It will be illustrated
by applying it to a simulated Mobile Backhaul environment.
Index Terms—SDN, 5G Mobile Backhaul, Network Slicing,
Traffic Monitoring, Latency Measurement, Traffic Engineering,
URLLC

I. INTRODUCTION

The fast growth of the data consumption in mobile networks
due to the wide spread of smartphones and tablets is raising
concerns about bandwidth and resources consumption.

Therefore, mobile operators require a solution that will allow
efficiently managing the network capacity and optimizing
the usage of available resources and reduce the Operative
Expenses (OPEX). In order to address this demand new
technologies such as Network Slicing and SDN based network
management are proposed.

Network Function Virtualization (NFV) allows the mobility of
network nodes which are virtualized and can be deployed in
any location of the network on top of a virtualization platform
such as KVM, VMware, Openstack. NFV together with SDN
can be used to deploy orchestrator for optionally managing
the Mobile Backhaul could be a solution.

The following sections will outline a suggestion for a mon-
itoring and packet forwarding algorithm within the Mobile
Backhaul to support Network Slicing utilizing SDN. After
introducing the current status of the research about SDN
controllers and traffic monitoring algorithms in section II. Sec-
tion III introduces to the concept of Network Slicing embedded
in the Mobile Backhaul, whereas Sections IV and V describe
more detailed the URLLC module’s underlying monitoring
and packet forwarding algorithms. In addition the functionality
will be shown and validated in a Mininet [1] simulation
environment outlined in section VI. Drawbacks caused by the
Mobile Backhaul architecture and the OpenFlow protocol will
be evaluated in section VII, while giving suggestions for a
possible change in the OpenFlow protocol functionalities. The
paper will be concluded by summarizing the key findings and
outlining possible future improvements in section VIII.

II. STATE OF THE ART

A network supporting SDN enabled Network Slicing requires
OpenFlow capable switches. Their behavior is determined by
a controlling entity using the OpenFlow protocol. Thus the
performance of the entire network is highly depending on
the controller. The recent developments in the field of SDN
controllers will be outlined in the following paragraphs and
a reasoning for the controller choice for this project is given.
Additionally the recent developments in SDN based network
traffic monitoring is given.

A. SDN Controller

Several different controllers have been proposed over the
past few years. When considering different papers, that are
evaluating those frameworks [2]–[5], it shows that none of
the initially developed controller frameworks are considered
anymore in evaluations and comparisons. NOX, NOX-MT,
Beacon, and Maestro which, for instance, where considered
for a performance comparison by Tootoonchian et al. in [2]
are by now replaced by OpenDayLight [6], ONOS [7], RYU
[8], Floodlight [9] and POX [10].

In 2014 Khondoker et al. [3] compared various of those
frameworks by applying criteria such as interfaces, platform
support, REST API, productivity, documentation, modularity,
OpenFlow support etc. As a result they considered RYU the
most suitable controller frameworks for common implemen-
tations, mainly due to its good OpenFlow support. OpenDay-
Light however, which back then was founded 9 months prior
to the publication of the paper, performed quite well in the
comparison.

In [4] Salman et al. once again compared the performance of
common controllers by focusing on the impact of thread count
and switch number. Along with old frameworks such as NOX
and Maestro they also considered RYU, OpenDayLight and
the even more recently released ONOS which is principally
designed for carrier networks. In their results they outline
OpenDayLight one of the prosperous full-featured controller
supporting a wide range of applications such as data centers.
RYU on the other hand was considered to be very suitable
for research applications, but due to its lack of modularity
compared to ONOS and OpenDayLight and the inability of
running cross-platforms it is considered to have a limited range
of real market applications.



Mamushiane et al. [5] understand their contribution as an
extension of the work by Salmon et al., described above.
They are applying similar metrics, more focusing on the effect
of network load. Furthermore they are using the most recent
releases with up-to-data features. In terms of scalability the
results show that ONOS and OpenDayLight perform very well
under heavy load and high numbers of switches. The results
show that OpenDayLight from a feature based and ONOS
from a overall performance based evaluation perspective have
the best results. Due to the low latency performance of RYU,
it is suggested for delay sensitive applications.

Regarding the controller used for this project RYU was chosen.
Taking the high delay sensitivity into consideration, it is very
suitable for the given project. Disadvantages compared to
more recently developed controllers such as the scalability for
bigger, more distributed networks, can be disregarded due to
the nature of the project as a proof of concept.

B. Traffic Monitoring

With the introduction of OpenFlow 1.3 [11] SDN controllers
include features to enable traffic monitoring for individual
switches. The controller can request statistics and applying
meter bands. In particular the following sets can be obtained:

• Individual flow statistics
• Aggregate flow statistics
• Flow table statistic
• Port statistics
• Queue statistics for a port
• Group counter statistics
• Meter statistics

Prior work regarding monitoring covers general approaches
as well as concrete frameworks implemented in different
controllers, while considering scalability and implementational
constraints.

Tootoonchian et al. did a quite early study [12] on traffic
monitoring utilizing queried statistics. As a result they present
OpenTM which is a real-time measurement tool without
packet sampling. Within their study they are focusing on
monitoring traffic on a predefined route. Their main focus
is allocated in the right polling pattern for the switches.
After evaluating different suggestions, they conclude in evenly
distributed statistic queries being the best performing solution.

After the introduction of meter bands in Openflow 1.3 Hamad
et al. [13] considered those within the application of traffic
measurement to enable traffic engineering. In general they
took a similar approach as the previously presented work by
Tootoonchian et al. But instead of only focusing on a specific
route they are estimating the available bandwidth of each link
in the network by querying meter statistics of individual flows.

More recent work such as the implementation of PANORAMA
by Gangwal et al. [14] focuses on the implementational
challenges of a link specific network monitoring. PANORAMA,
which is a real-time, birds-eye view monitoring tool designed

for POX, obtains the link data transfer rate, link loss and link
delay by applying algorithms suggested by Adrichem et al.
in [15].

III. NETWORK SLICING IN 5G MOBILE BACKHAUL

The concept of Network Slicing incorporates the isolation of
network functionalities to deliver different features to different
network slices. Users can be therefore assigned to their indi-
vidually required network slice such as for instance high band-
width or low latency. Using static network slices by modifying
VLAN identifiers (VID) in the medium access layer, MPLS in
the network layer or DSCP/ToS in the transport layer is already
used in the Mobile Backhaul. Introducing Network Slicing
based on SDN to the Mobile Backhaul enables operators to
not depend on static configurations applied to one of the fields
above anymore. Instead User Equipment (UE) can be assigned
to their dedicated network slice dynamically.

URLLC however requires immediate modifications to its net-
work slice to provide the necessary features to the user such as
low latency and high reliability. Especially the later requires
a fast adaptation of the network slice in case of congestion,
which cannot be ensured by static configurations. Thus SDN
is inalienable for URLLC communication within the Mobile
Backhaul.

The evolved NodeB (eNB), the base station (BS) in a 5G
system, uses TEIDs as unique identifiers included in the GTP
encapsuling. To be able to distinguish uplink from downlink
traffic, the EPC assigns a different TEID in the GTP encap-
suling. Thus every UE is identified by two different TEIDs
and the information whether this user should be assigned to
the URLLC group is given by the EPC. An overview of the
structure is given in figure 1.

Fig. 1. Structural diagram of the Mobile Backhaul including the EPC and
RAN

As already stated above, dynamic Network Slicing requires a
SDN controller. In this suggestion the controller’s modules are
hosted in the EPC, communicating with the Mobile Backhaul’s
Switches via the OpenFlow Protocol. Figure 2 shows the
suggested modules of the URLLC application including its
depending application Switches.

Switches itself is located within the RYU framework at
/ryu/ryu/topology/switches.py and is mainly responsible for
topology discovery in the respected network utilizing LLDP
packets. Additionally those packets are used to obtain the indi-
vidual link latency which is further elaborated in section IV-C.



The URLLC application is hosting the modules for traffic
monitoring and packet forwarding. Those are executed in a
threaded environment providing additional measurement and
monitoring functionalities, described more detailed in sec-
tion IV, as well as URLLC and non-URLLC traffic forwarding
in the Mobile Backhaul network, described in section V.

The previously obtained measurement data is saved in a
MongoDB database to be available for other modules and can
be used for path determination. Additionally the data can be
accessed outside the application for visualization purposes.

Fig. 2. Architectural overview for controller application

IV. TRAFFIC MONITORING

The suggested traffic measurement and monitoring implemen-
tation includes the following unidirectional measurements for
every individual link in the Backhaul network:

• residual bandwidth
• link packet loss
• link delay

Those metrics and other calculated values based on the mea-
surements, such as delay variation, are used to determine the
optimal path for URLLC. The algorithms for the monitoring
follow the suggestions provided by Gangwal et al. [14] and
Adrichem et al. in [15]. The monitoring can be classified
among passive (residual bandwidth, link packet loss) and
active measurements (link delay). Detailed information on the
implementation of the individual measurement scheme will be
outlined within the next paragraphs.

A. Residual Bandwidth

The residual bandwidth (Bresidual) is calculated with the
following approach:

Bresidual = Bavailable −Bused (1)

The available bandwidth (Bavailable) is hardware specific and
needs to be provided to the controller within the environment
of a configuration file. The used bandwidth (Bused) on the
other hand is the measured metric and is obtained by iteratively

querying the switches port statistics and applying equation 2
for every unidirectional link’s outgoing port.

Bused =
Dtx

cur −Dtx
prev

tcur − tprev
(2)

Where Dtx represents the number of the port’s transmitted
bytes and t denotes the time of port observation.

B. Link Packet Loss

Similar to the residual bandwidth estimation the link packet
loss (LPL) measurement applies a passive measurement
scheme by utilizing port statistics. In order to acquire the
LPL between switch 1 (s1) and switch 2 (s2) in percent, the
following equation is applied.

LPLs1,s2
% =

[
1− n packets2rx

n packets1tx

]
∗ 100 (3)

Where n packet denotes to the port statistic of received (rx)
or transmitted (tx) packets at the designated switch.

C. Link Delay

Compared to the previous two measurement schemes link de-
lay (LD) cannot be acquired by passively requesting statistics
from individual switches. Active measurement by inserting
probes into the network has to be much rather applied and
is based on two individual measurements. First the round
trip time (RTT) of the probe from the controller to the first
switch of the respected link to its second switch and back
to the controller. In order to obtain the desired link delay, the
individual controller-switch delay has to be determined as well
and subtracted from the RTT. Thus individual LD is obtained
according to the following equation:

LD = RTT −
(
SCD1 + SCD2

2

)
(4)

Where SCD denotes to the switch’s switch-controller delay.

From an implementational perspective a probe can by any
Ethernet packet created by the controller and handled ac-
cordingly by the switches. When using RYU as a controller
it is helpful to use the built-in packet libraries such as the
EchoRequest for the switch-controller delay, since the packet is
automatically sent back by the desired switch. The delay itself
is obtained by saving a timestamp when sending the packet
and comparing it with the timestamp of the EchoReply. For the
RTT measurements LLDP packets, that are used to discover
the network topology, can be utilized. Per default LLDP
packets don’t carry timing information, therefore the Switches
application, hosting the topology discovery, was manipulated
to store timestamp data when sending a LLDP packet. After
receiving the packet in the controller the RTT is calculated
and stored in the application’s port information field. Thus the
URLLC application can request this information after every
topology discovery and apply it to the locally maintained port
statistics.



D. Measurement Improvements

Due to statistical variations in the sampled measurement values
a sliding window was applied to ensure lower variance while
at the same time ensuring a quick response time to sudden
changes in specific links. For the passive and the individual
active measurements a window size of 4 was applied. Whereas
the LD which is a combination of RTT and SCD was once
again averaged with a window size of 6.

E. Visualization

To visualize measurement data the Python framework Dash
[16] developed by Plotly is used. It provides data visualization
functionalities that are displayed by a web browser. With
the present implementation it can be distinguished between
Backhaul and non-Backhaul links to be plotted. While at the
same time individual links can be still selected and deselected.
The visualized data includes:

• used bandwidth
• link latency
• link packet loss
• switch-controller delay

Figure 3 shows a sample plot of the link latency within the
Backhaul network measured for the last 40 seconds. The
underlying network is simulated in Mininet and has the same
topology as the Backhaul network used for the experiments
described in section VI.

Fig. 3. Latency in Backhaul network without external user traffic

V. URLLC PACKET FORWARDING

Since the user identification is done with both TEIDs a UE
data base has to be maintained in the controller based on
those. Therefore they need to be extracted at the dedicated
entities and the VLAN representing the URLLC network slice
needs to be maintained and applied to those UE, which will
be explained in the following paragraphs.

A. TEID Extraction and Priority Assignment

The TEID extraction along with the VID assignment is done
in the individual BS and the EPC switch connected to the EPC
itself. Before receiving a packet from the UE, there are not

any flows, except the LLDP and default controller forwarding,
installed in the switches.

Regarding the packet forwarding two different protocols have
to be processed by every entity of the network:

• ARP for host discovery
• GTP used for URLLC and non-URLLC

Whereas a GTP packet is assumed to be a UDP packet with the
destination port 2152 and the specific GTP header including
the TEID.

When receiving in packet from an unknown UE, this device
has to be registered and is therefore forwarded to the controller.
The obtained registration information is:

• UE MAC address
• TEID assigned by BS
• TEID assigned by EPC
• VID assigned to UE

After registering the UE’s MAC address and the TEID as-
signed by the BS, necessary flows are installed in the BS
which ensure packet forwarding to the Backhaul network. For
the ARP traffic basic forwarding to the RAN access, the EPC
and the UE based on the MAC address is installed in the BS
and the EPC switch. In the initial phase of the registration
the information whether the UE is in group of URLLC users
cannot be obtained since the EPC is assigning those priorities.
Thus every UE’s initial packet is forwarded as if the UE would
be in the group of non-URLLC users.

In order to finish the UE’s registration in the controller, the
first response packet from the EPC needs to be fetched in
the EPC switch. This is achieved by implementing a flow
resulting in controller and EPC access forwarding. Thus the
UE’s communication is still allocated in the default group,
but the TEID information sent by EPC can be extracted in the
controller and the registration process is done.

Along with previously exchanged information about URLLC
specific TEIDs the controller now changes the VID assignment
in the BS and the EPC switch and therefore assigns the UE
to the URLLC group. Regardless the priority of the UE the
previously installed flow in the EPC switch is modified towards
EPC access forwarding without considering the controller
anymore.

B. URLLC Path Maintainance

Obtaining the right path in the Backhaul network after reach-
ing a predefined packet loss rate is done by utilizing the
Dijkstra algorithm. The individual link latency is used by the
Dijkstra algorithm after excluding the congested link from the
graph. Figure 4 shows the possible result for that calculation.
The dashed line denotes the congested link.

In order to achieve a higher reliability two disjoint paths,
installed in the Backhaul network, are necessary. This sec-
ondary, disjoint URLLC path is determined by another Dijkstra
path calculation excluding the congested path as well as the



Fig. 4. Primary path obtained by Dijkstra algorithm

previously obtained primary path. A possible result of that
calculation is given in figure 5. Due to the reduced amount
of edges in the graph the path latency of the secondary path
cannot be lower than the primary path’s latency.

Fig. 5. Secondary path obtained by Dijkstra algorithm

After detecting a rise in packet loss for the currently selected
primary URLLC path, the controller changes the URLLC
group’s VID. This directs traffic via the secondary path to
provide enough time for the controller to fetch the latest mea-
surement data and calculate a new path based on those latency
measurements. After recalculating the new URLLC path, the
controller deploys it in the Backhaul network and removes the
previously used URLLC trajectory. Thus the URLLC group is
assigned the new primary path with the lowest latency in the
network. After reducing the graph to extract the secondary
URLLC path, it is calculated and installed in the switches.

VI. SYSTEM VALIDATION

Objective of this paper is to evaluate the opportunity of
enhancing the Mobile Backhaul’s performance by introducing
SDN enabled Network Slicing. In the previous sections III, IV
and V individual algorithms were explained and the topology
illustrated. Within this section the performance of the Mobile
Backhaul will be elaborated by applying it to a experimental
setup which emulates the BS’s and EPC’s behavior in a
Mininet environment.

The legend in the measurement plots provided in this section
uses its own notation. A link is described by two switches
separated by a column. A switch is labled by two digits,
whereas the first digit denotes to the switch’s location in the
network and the second labels the switch according to the

indexing in figure 5. The location index 2 denotes to the switch
being allocated in the Mobile Backhaul.

A. Topology Description

For the experiment a virtual machine provided by Mininet [1]
runs Mininet 2.2.2 and the RYU controller version 4.32
@cef24da9. Referring to figure 1 in section V the Backhaul
is emulated by the network of switches shown in figure 6.

The topology is built using the following Modules. Hosts
such as the UEs and the EPC utilize the module Hosts found
with the Mininet Python framework at mininet.node. Every
host is configured with a unique MAC and IP address within
the emulated network. The mininet.node location applies as
well to the controller being a RemoteController. The links
in between switches are emulated by the module TCLink
found at mininet.link. The advantage of using TCLink over
the basic Link is that specifications for available bandwidth,
latency, packet loss, etc. can be made. For the present topology
changes were made exclusively to the latency since that is the
metric used for determining the new path. All other values
are initialized within the TCLink module according to their
defaults. Links that do not belong to the Mobile Backhaul are
configured without any latency.

The marked red path in this figure shows the default path for
non-URLLC with its individual link delays.

Fig. 6. Mobile Backhaul used for experiment with default path

Testing the functionality of the Mobile Backhaul requires UEs
as well as emulated behavior of the eNB and the EPC, illus-
trated in figure 7. A UE as well as the EPC are implemented
as hosts that are providing sockets for sending and receiving
data. A host is creating a GTP packet with a host specific TEID
and random 1 kB payload that is forwarded to the emulated
BS in 100 ms intervals. The EPC listens to incoming packets,
changes the TEID and sends them back to the UE it received
the packet from.

B. Test Case Description

In the present test environment the default path, given in
figure 6, is initialized to be BH[1 − 2 − 4 − 5 − 6]. Using
the latest measurement values, the primary URLLC path is
determined to be BH[1 − 2 − 4 − 6] and the secondary path
is BH[1 − 3 − 2 − 5 − 6]. Both paths are shown in figure 8,



Fig. 7. RAN and EPC emulation used for experiment

where the blue and green trajectory denote the primary and
secondary URLLC path.

Fig. 8. Primary (blue) and secondary (green) URLLC path

Thus when congesting the link BH[2 − 4], illustrated by
the dashed line in figure 8, the default path as well as the
primary URLLC path are affected and the URLLC group
should receive a new path for the Mobile Backhaul.

For congesting the network the built-in Linux tool Iperf [17]
is used. Therefore a dedicated Iperf-host is connected to every
Backhaul switch (BH 2, 3, 4, 5), which installs individual
forwarding flows for Iperf generated traffic during the URLLC
Module initialization. Every Iperf host provides a running
Iperf server which acts as a traffic drain, started by the bash
command:

iperf -s -u &

Where the options -s and -u specify a server expecting UDP
packets.

Congesting the link BH[2 − 4] is therefore done by sending
Iperf traffic from BH 2 to BH 4. The Iperf client, acting as a
source, is initiated by the bash command:

iperf -c 10.0.24.1 -u -b 100m -t 40

Where the option -c and -u specifies the client, sending UDP
packets, with the IP address of the dedicated server. -b and
-t denotes the sent bandwidth of 100 Mbit/s and 40 seconds
duration of the traffic injection.

The measured packet loss rate and bandwidth in the Backhaul
links are given in the figures 9 and 10. Additionally to the
individual link status measurements, the RTT for URLLC and
non-URLLC UEs will be evaluated. The advantages of the
proposal from the users’ perspective is given in figure 13.

Fig. 9. Bandwidth measurement after congesting with Iperf

Fig. 10. Packet loss rate measurement after congesting with Iperf

C. Results Description and Evaluation

Figure 9 clearly shows the start of the Iperf congestion with an
increased measured bandwidth in the BH[2−4] link. Due to the
limited bandwidth of the virtualized links a sudden increase
of the link’s packet loss rate, shown in figure 10, is detected.

After detecting a high packet loss on the link that belongs to
the URLLC path and removing that link from the graph, a
new route has to be calculated and assigned to the URLLC
group’s VLAN. According to recently measured link latency
BH[1 − 2 − 4 − 6] and BH[1 − 2 − 5 − 6] were calculated
for the new primary and secondary URLLC paths. The newly
installed forwarding rules are given in figure 11.

Fig. 11. New primary (blue) and secondary (green) URLLC path

For validating those new forwarding paths being applied to
the URLLC group, after detecting high packet loss, band-
width measurements are used. Therefore figure 12 shows the
measurements already given in figure 9 but with a differ-



ently scaled ordinate axis. The link BH[1 − 2], for instance,
previously carried the non-URLLC and the URLLC traffic.
After redetermining the URLLC path BH[1 − 3] is used to
forward URLLC traffic. This results into a reduced bandwidth,
visualized in figure 12, in BH[1 − 2], since it is now only
carrying non-URLLC traffic. BH[1 − 3] on the other hand
will be used for URLLC traffic and therefore has an increased
measured bandwidth.

Fig. 12. Bandwidth measurements of non-congested links

The functionality of the mechanism outlined in the paragraph
above is also shown in the individual user’s RTT measurement.
In figure 13 the effects for a dedicated URLLC and non-
URLLC UE are shown, while congesting the same link as
in the previous measurement. It clearly proofs the good per-
formance of path determination algorithm since the URLLC
UE is not affected by the congestion, whereas a very high RTT
is measured for the non-URLLC UE during the congestion by
Iperf.

Fig. 13. RTT measurements for a URLLC and a non-URLLC user

VII. DRAWBACKS AND POSSIBLE SOLUTIONS

The topology description in section VI-A shows already a
drawback of the current solution. In the present deployment,
the GTP encapsulation is done by the UE itself. This does
not correspond to a real deployment, in which the TEID
assignment and therefore the GTP encapsulation in ensured
by the eNB. Since TEIDs cannot be used as a matchable
identifier within OpenFlow, the UE’s MAC address is used

as a unique identifier for maintaining a UE data base in the
controller and matching accordingly in the EPC switch would
not be available.

Thus, for a real deployment, a different matchable identifier
has to be used for the controller to allocate a UE in its ded-
icated user group. A solution for that problem is to integrate
GTP parsing and therefore TEID matching in the OpenFlow
standard. When using a OpenFlow capable eNB the priority
information would be exchanged with the controller situated
in the EPC during the UE registration process, illustrated in
figure 14.

Fig. 14. Exchange of priority information between eNB and EPC

Based on the exchanged priority information, the controller
would instruct the eNB to directly assign the URLLC’s VID to
the GTP frame created in this entity, when receiving packets
from that UE. Thus the controller would be only involved
during the registration process and no additional packets have
to be processed by the controller afterwards.

Generally speaking the user group identification is not entirely
based on the VLAN identifier. Instead of matching for a
specific VID in the Backhaul the ToS field could be used as
well by assigning a specific QCI depending on the the UE
being a URLLC member.

VIII. CONCLUSION

This paper has outlined the possibility of using SDN to enable
Network Slicing in the Mobile Backhaul.

It suggests algorithms to measure and monitor necessary link
specific data in a network with OpenFlow capable switches by
introducing active and passive measurement technologies. The
obtained data is utilized to determine reliable and low latency
paths that can be assigned to a specific group of UEs, referred
to as URLLC group. The suggested controller application is
tested by congesting specific links in the present network.
After detecting the congestion the URLLC group’s packets
are redirected on a different path that is not congested, which
proves the capability of SDN managed Backhaul networks to
adjust to topology changes by assigning alternative paths.

REFERENCES

[1] Mininet. [Online]. Available: http://mininet.org/
[2] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,

“On Controller Performance in Software-defined Networks,” vol. 54, 04
2012, pp. 10–10.



[3] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based
comparison and selection of Software Defined Networking (SDN)
controllers,” in 2014 World Congress on Computer Applications and
Information Systems (WCCAIS), Jan 2014, pp. 1–7.

[4] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers:
A comparative study,” in 2016 18th Mediterranean Electrotechnical
Conference (MELECON), April 2016, pp. 1–6.

[5] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation
of the performance of popular sdn controllers,” in 2018 Wireless Days
(WD), April 2018, pp. 54–59.

[6] Open Daylight. [Online]. Available: https://www.opendaylight.org/
[7] Open Network Operating System (ONOS). [Online]. Available:

https://onosproject.org/
[8] RYU. [Online]. Available: https://github.com/osrg/ryu
[9] Project Floodlight. [Online]. Available: http://www.projectfloodlight.org/

[10] POX. [Online]. Available: https://github.com/noxrepo/pox
[11] OpenFlow Switch Specification, Open Networking Foundation Std. ONF

TS-023, Rev. 1.3.5, 03 2015.
[12] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix

Estimator for OpenFlow Networks,” in Passive and Active Measurement,
A. Krishnamurthy and B. Plattner, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 201–210.

[13] D. J. Hamad, k. G. Yalda, and I. T. Okumus, “Getting traffic statistics
from network devices in an SDN environment using OpenFlow,” 09
2015.

[14] A. Gangwal, M. Conti, and M. S. Gaur, “Panorama: Real-time bird’s
eye view of an OpenFlow network,” in 2017 IEEE 14th International
Conference on Networking, Sensing and Control (ICNSC), May 2017,
pp. 204–209.

[15] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow Software-Defined Networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS), May
2014, pp. 1–8.

[16] Dash. [Online]. Available: https://dash.plot.ly/
[17] Iperf. [Online]. Available: https://iperf.fr/


