
sensors

Article

Network Service and Resource Orchestration:
A Feature and Performance Analysis within
the MEC-Enhanced Vehicular Network Context

Nina Slamnik-Kriještorac * , Erik de Britto e Silva , Esteban Municio ,
Henrique C. Carvalho de Resende , Seilendria A. Hadiwardoyo
and Johann M. Marquez-Barja

IDLab—Faculty of Applied Engineering, University of Antwerp—imec, Sint-Pietersvliet, 2000 Antwerp,
Belgium; Erik.deBrittoeSilva@uantwerpen.be (E.d.B.e.S.); esteban.municio@uantwerpen.be (E.M.);
Henrique.CarvalhoDeResende@uantwerpen.be (H.C.C.d.R.); seilendria.hadiwardoyo@uantwerpen.be (S.A.H.);
johann.marquez-barja@uantwerpen.be (J.M.M.-B.)
* Correspondence: nina.slamnikkrijestorac@uantwerpen.be

Received: 31 May 2020; Accepted: 6 July 2020; Published: 10 July 2020
����������
�������

Abstract: By providing storage and computational resources at the network edge, which enables
hosting applications closer to the mobile users, Multi-Access Edge Computing (MEC) uses the mobile
backhaul, and the network core more efficiently, thereby reducing the overall latency. Fostering the
synergy between 5G and MEC brings ultra-reliable low-latency in data transmission, and paves the
way towards numerous latency-sensitive automotive use cases, with the ultimate goal of enabling
autonomous driving. Despite the benefits of significant latency reduction, bringing MEC platforms
into 5G-based vehicular networks imposes severe challenges towards poorly scalable network
management, as MEC platforms usually represent a highly heterogeneous environment. Therefore,
there is a strong need to perform network management and orchestration in an automated way, which,
being supported by Software Defined Networking (SDN) and Network Function Virtualization (NFV),
will further decrease the latency. With recent advances in SDN, along with NFV, which aim to facilitate
management automation for tackling delay issues in vehicular communications, we study the
closed-loop life-cycle management of network services, and map such cycle to the Management and
Orchestration (MANO) systems, such as ETSI NFV MANO. In this paper, we provide a comprehensive
overview of existing MANO solutions, studying their most important features to enable network
service and resource orchestration in MEC-enhanced vehicular networks. Finally, using a real testbed
setup, we conduct and present an extensive performance analysis of Open Baton and Open Source
MANO that are, due to their lightweight resource footprint, and compliance to ETSI standards,
suitable solutions for resource and service management and orchestration within the network edge.

Keywords: 5G; control; edge and cloud computing; MANO; MEC; monitoring; NFV; orchestration;
V2X; vehicular communications

1. Introduction

Vehicular communications presently provide a support for a fruitful variety of safety
(e.g., emergency electronic brake warning, lane change warning, forward collision warning, etc.),
non-safety (e.g., traffic information systems), and infotainment (e.g., peer-to-peer gaming, IPTV,
Internet content sharing, video streaming, etc.) vehicular applications [1–5]. Since the expectations
towards vehicular communications are increasing, and ultra-low latency is a primary and critical
concern for autonomous driving as an ultimate goal, there is an urgent need to leverage on emerging
technologies such as 5G and Multi-Access Edge Computing (MEC) to facilitate the performance of

Sensors 2020, 20, 3852; doi:10.3390/s20143852 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1719-772X
https://orcid.org/0000-0002-0468-8514
https://orcid.org/0000-0002-9865-2538
https://orcid.org/0000-0002-3852-0162
https://orcid.org/0000-0002-8997-0198
https://orcid.org/0000-0001-5660-3597
http://www.mdpi.com/1424-8220/20/14/3852?type=check_update&version=1
http://dx.doi.org/10.3390/s20143852
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 3852 2 of 28

various vehicular applications (Figure 1a). By jointly considering strict requirements for 5G networks,
such as greater coverage, end-to-end latency less than 1ms, massive connectivity, and massive capacity,
accompanied by enormous heterogeneity in network resources, technologies, vendors, operators,
vehicles, etc., traditional manual network management becomes impossible to scale and to maintain.
It is an utmost challenge to achieve high Quality of Service (QoS) and Quality of Experience (QoE)
without sophisticated management and orchestration [6], which are, at the same time, compliant to
the standards. Hence, such heterogeneity presses an urgent need for transition from a poorly scalable
network management to its automation. In short, bringing 5G and MEC to vehicular networks reduces
data transmission time [7] for latency-sensitive use cases such as autonomous driving, but requires
automated network management in order to cope with aforementioned heterogeneity.

R
oa

ds
id

e
in

fr
as

tr
uc

tu
re

R
ad

io
 A

cc
es

s
N

et
w

or
k

Ed
ge

M
A

N
O

sy
st

em
s

C
or

e
ne

tw
or

k

NFV Management
and Orchestration Entity

ba
ck
ha
ul

backaulMEC server

V2N

Centralized
cloud

MEC server

CDN CDNCDN CDN

V2N V2N

(a)

Orchestration

Control

Monitoring

close-loop
lifecycle

management

(b)

Figure 1. Management and orchestration in MEC-enhanced vehicular networks. (a) A high-level
architecture of MEC-enhanced vehicular networks. (b) The closed-loop life-cycle management
of network services.

Therefore, in this paper, we study the automated closed-loop life-cycle management and
orchestration of network services and resources within MEC, based on the three inter-coupled activities,
i.e., orchestration, control, and monitoring (as shown in Figure 1b). The recent advances in Software
Defined Networking (SDN) and Network Function Virtualization (NFV) aim to facilitate network
management automation to a great extent when incorporated in MEC architectures. In particular, SDN
and NFV bring more flexibility, and programmability to wired and wireless communication networks,
while enabling higher resource use, and lower costs [8]. Yet, the full potential of such synergy is still to
be discovered [6].

Figure 1a illustrates a high-level architecture of MEC-enabled vehicular networks, thereby
spanning the vehicles themselves (with On-board Units (OBUs) equipped with sensors), Radio Access
Network (RAN), edge, and the NFV Management and Orchestration (MANO) entity. Providing storage
and computational resources at the edge, MEC is intended to reduce latency for mobile users (i.e.,
vehicles) by using more efficiently the mobile backhaul as well as the core networks [9]. The MANO
manages and orchestrates MEC servers and the services deployed and running on top of these servers,
and finally, the core network. The position of MEC platforms enables using resources exposed at the
network edge to host, and to deploy numerous vehicular applications that can be easily instantiated,
and terminated in a dynamic way. Furthermore, due to the opportunities to deploy vehicular services
in a lightweight manner, MEC can also enable a migration of services from one machine that hosts the

Sensors 2020, 20, 3852 3 of 28

service to another if it is efficiently managed and orchestrated by a suitable MANO platform. In this
way, a service migration tackles the low-latency requirements, since a new placement of services will
ensure that low-latency can be achieved and maintained by responding to the vehicle movements in a
proactive way.

The bottom level of the overall network snapshot depicted in Figure 1a presents an in-vehicle
infotainment use case [3–5] in which vehicles exploit Content Delivery Network (CDN) as a service,
with cache CDN servers placed within MEC in order to decrease the overall latency in accessing popular
websites (e.g., Google maps). Such decentralized cloud architecture is going to be a cornerstone for
vehicular communications, providing low latency services tailored to various 5G automotive use cases
(e.g., active driving safety assistance, road traffic monitoring, cooperative manoeuvring, in-vehicle
infotainment, emergency situations, etc.). Simultaneously, this cloud architecture assists in the offload
of heavy computational tasks from autonomous vehicles to the edge.

In Figure 1b, we illustrate orchestration, control, and monitoring, as three parallel and interconnected
processes. In particular, orchestration is a joint process of: (i) automation, (ii) coordination, and
(iii) managing deployment and operation of network services. The role of SDN is to provide
connectivity, and to keep a centralized abstract view of the network topology [8,10]. In the other
hand, NFV is in charge of managing the network functions. With both support of SDN, and NFV,
orchestration allows network services to be automatically deployed and managed [11]. In terms of
control, we introduce existing MANO tools and exploit their control features. Finally, monitoring
provides valuable input about available resources and network status to the orchestration entity, which
can make decisions upon network services in a proactive and timely manner. Based on the decision
made by orchestration entity, control tweaks the network service configuration, and performs
resource re-allocation.

The synchronization between these three interconnected processes such as orchestration, control,
and monitoring, is essential to enable automation for the resource and service management in
strongly heterogeneous environments. Therefore, we map such closed-loop life-cycle automation onto
the existing NFV MANO systems, and present perspectives on their incorporation within MEC-based
vehicular networks.

Derived from the isolation of the most important Key Performance Indicators (KPIs) for automated
management and orchestration, there are two major groups, i.e., feature-based and operational KPIs,
which can be used to benchmark existing MANO solutions for supporting delay-sensitive vehicular
applications. Accordingly, we summarize our contribution as follows:

1. We map the architecture of MANO solutions to the closed-loop life-cycle management and
orchestration, pointing at its clear articulation in the research and industry fields.

2. A feature-based analysis: Taking into account the feature-based KPIs, i.e., key features of MANO
tools (e.g., required resources needed to run a particular MANO, number of life-cycle management
operations that MANO can effectively perform, etc.), we present a comprehensive overview
of several MANO tools, developed within different research projects that recently increased
the interest in network service orchestration. Due to their compliance to ETSI standards, and
lightweight deployment opportunities, we see Open Source MANO (OSM) and Open Baton
as suitable solutions for MANO operations within the resource-constrained network edge.
Therefore, we bring their extensive performance analysis conducted in a real testbed setup
as our next contribution.

3. A performance analysis: One of the common operational KPIs that is used to measure
performance of MANO solutions is an overall instantiation delay. In particular, it refers to
the time needed for a MANO solution to successfully instantiate a fully operational network
service. Therefore, based on this KPI we evaluate the performance of Open Baton and
OSM in a testbed environment, and discuss their comparison while providing instructions
on their deployment in vehicular networks based on 5G and MEC. Besides this comparison, we
showcase how in particular Open Baton responds to different virtualization technologies (i.e.,

Sensors 2020, 20, 3852 4 of 28

containers and VMs) that are used for service virtualization. This extensive performance analysis
is obtained in the high-performance testbed, mimicking the realistic features of edge computing
in vehicular networks.

The paper is organized as follows: in the next section we present the background and related
work. A thorough description on the closed-loop life-cycle management of network services in MEC-
based vehicular networks is presented in Section 3. This is followed by an in-depth analysis of the
features of existing MANO tools in Section 4, along with the performance analysis of Open Baton and
OSM in Section 5. Finally, we conclude the paper and discuss future works in Section 6.

2. Background and Related Work

In this section, we provide an overview of works that motivated the incorporation of 5G and MEC
to vehicular communications, aiming to achieve ultra-low latency as an ultimate goal. In Section 2.1
we overview existing works on leveraging MEC in vehicular context, while in Section 2.2 we present
similar approaches to solve the insufficient flexibility and scalability of management and orchestration
systems in MEC-enhanced vehicular networks. There is several works tackling MEC-based vehicular
networks that are recently published, and within this section we present the ones which we consider
important for the research direction of our approach.

2.1. MEC in Vehicular Context

A brisk overview of works that study the incorporation of MEC in vehicular communications is
presented in Table 1. An example of the architecture of MEC support for vehicular communication
systems is presented in Figure 1a, and the explanation of components of such architecture, as well as
their relations is provided by Wang et al. [12]. To depict the peculiarities of such architecture, authors
provided an architecture overview within confines of the two particular use cases, i.e., HD Map and
Intelligent Intersection. In their tutorial-based approach, Shah et al. [1] present the mapping of the
5G key features on vehicular communications, explaining how these features can be beneficial for
Vehicle-to-Everything (V2X) networks. As stated by Shah et al. [1], some of the major limitations
imposed by IEEE 802.11p technology, which is currently a basis for Vehicle-to-Vehicle (V2V) and V2N,
are: insufficient support for diverse applications (safety, non-safety, and infotainment), inadequate
provisions for minimizing communication load caused by periodic beacons, ineffective congestion
control, insufficient reliability, etc. Therefore, Shah et al. [1] point at the potential in using 5G on the
way to resolving the aforementioned constraints. To enable the most various set of use cases, vehicular
networks have to consolidate all the different requirements for diverse services (e.g., video streaming,
cooperative maneuvering, lane change warning, etc.), and to foster the synergy between NFV, SDN,
and MEC to meet these requirements.

Table 1. 5G and MEC in vehicular context.

Research Direction Work

5G in vehicular communications [1,12]

MEC and Non-Orthogonal Multiple Access (NOMA) [1,2,12,13]
MEC in vehicular communications Computation offloading to MEC platforms [1,12–17]

According to Shah et al. [1], 5G and MEC are expected to improve the current support for vehicular
applications, as most of them cannot be fulfilled only by Roadside Unit (RSU) connectivity. Since MEC
relies on NFV to virtualize services, it is currently seen as a key platform for hosting diverse services,
which can be discovered, accessed, and used, by vehicles [1]. To test a practical implementation of
service provisioning in vehicular networks supported by edge and cloud, Laaroussi et al. [13] created
an empirical analysis, by comparing the edge-based service provisioning, and the one provided

Sensors 2020, 20, 3852 5 of 28

by centralized cloud. Their results show that edge-based service provisioning outperforms the
implementation with a centralized cloud in terms of achieved throughput, for the cases of different
widespread application layer protocols, such as HyperText Transfer Protocol (HTTP), Constrained
Application Protocol (CoAP), and MQ Telemetry Transport (MQTT).

Furthermore, Ning et al. [2] agree that despite the benefits brought by MEC (e.g., highly efficient
usage of mobile backhaul networks) there is still a vast room for improvement on ubiquitous
connectivity, energy-efficient computation, and ultra-low latency [2]. As it is estimated that around
45% of the generated data in 2020 will be processed by edge servers instead of centralized clouds [2],
Ning et al. address the problem of offloading traffic from resource-constrained vehicles to MEC
platform. They consider heterogeneous requirements of vehicle mobility and the computation
tasks, integrating MEC-enhanced vehicular networks with Non-Orthogonal Multiple Access (NOMA)
technology, which uses more efficiently the wireless spectrum [2].

As computation offloading is one of the benefits of bringing MEC to vehicular communications,
there are numerous works that propose offloading schemes that optimize offloading decisions and
resource allocation. However, task offloading supported by MEC is out of scope of our paper,
and therefore more information can be found in [14–17].

2.2. Management and Orchestration of Resources and Services within MEC

In Table 2, we group background works into different categories based on whether they study
orchestration, control, or monitoring, in a theoretical, or in a practical way. Regarding the MEC
platform and its emerging features, Taleb et al. [9] present an extensive survey, which analyzes
MEC as a decentralized cloud architecture that transforms the legacy Base Stations (BSs), into an IT
environment at the edge of RAN. However, the orchestration of services and resources on a deployed
MEC is recognized as a highly challenging task, due to the high speed of vehicles, and the need to
maintain service continuity [9].

Furthermore, Soua et al. [6] discuss MEC in vehicular communications, as well as support
that SDN and NFV provide to MEC, in order to meet the requirements of responsiveness, reliability,
and resiliency for automated services. Within the literature scope that they spanned, Soua et al. [6] point
at possible solutions for mobility-aware computation offloading, but they also focus on the resource
management and orchestration challenges, mostly imposed by heterogeneity of resources and services
at network edge. Soua et al. [6] and Taleb et al. [9] also discuss that this high heterogeneity in services,
resources, technologies, and cloud infrastructure induce severe challenges to meet QoS and QoE
requirements, and to maintain service continuity. Also, this heterogeneous nature makes the resource
allocation [18] and management even more complex. Therefore, there is a need for more sophisticated
framework for service and resource management, unifying networking and cloud orchestration [6,9].
Importantly, Soua et al. [6] accentuate the need to exploit the synergy between NFV, SDN, and
MEC, to create a programmable, flexible, and controllable architecture, particularly customized for
Cooperative, Connected, and Automated Mobility (CCAM) use cases. Such architecture leverages on
deployment of SDN controllers and Virtual Network Functions (VNFs), which should consider traffic
characteristics, wireless diversity, and mobility patterns. As presented by Abdelaziz et al. [8], such
management of the traffic handling is possible by enabling standard interfaces of the control layer,
which further makes application layer more flexible.

Furthermore, MEC can benefit from SDN and NFV because of the opportunity to facilitate
management and orchestration, putting it into an software-based framework. As shown by Liu et al. [7],
the control component of management in SDN-based vehicular network assisted by MEC, runs
on the commodity operation system. Thus, the deployment, update, and administration can be
implemented by a software procedure. As an example for such management and orchestration
platform, Soenen et al. [19] thoroughly present their modular and programmable management
and orchestration framework that can be tailored to a service, or a particular VNF. According to
Soenen et al. [19], the aforementioned customization can be achieved by constructing the so-called

Sensors 2020, 20, 3852 6 of 28

function-specific managers, and service-specific managers. These managers should be described
and configured within VNF Descriptors (VNFDs), and Network Service Descriptors (NSDs), so they
support MANO entities towards managing and orchestrating a specific service and its resources in
a custom manner.

Regarding the closed-loop life-cycle management and orchestration, there are several works
which study concepts of the three constituent components (i.e., orchestration, control [20],
and monitoring [21–23]), but only separately. Apart from specific vehicular-based perspective,
de Sousa et al. [11] distinguish and present some key concepts of network service orchestration,
and also provide an in-depth taxonomy of different orchestration approaches and solutions, paving
the way for the realization of diverse orchestration application scenarios. From a theoretical point
of view, to realize network service orchestration a Multi-domain Orchestrator (MDO) needs to be
employed, as it coordinates resources and services in multiple administrative domains, spanning
various technologies [11].

Moreover, both approaches presented in [9,11] provide a valuable overview of the research projects
relevant for network service orchestration, altogether with several orchestration options that emerged
from industry and standardization. In particular, de Sousa et al. [11] review the existing solutions from
a more specific perspective than the general one provided in [9]. In their architecture-oriented overview,
de Sousa et al. [11] studied the solutions based on the orchestration architecture, whether it spans one
or multiple domains, in a hierarchical, cascade, or distributed manner, providing resource, service,
or life-cycle orchestration, and so on. Regarding monitoring, there is an effort to study incorporating
monitoring into the ETSI NFV architecture towards 5G, provided by Celdran et al. [21]. Their focus is
on monitoring the control and data planes separately.

An interesting and yet realistic demonstration of using MEC for 5G connected cars is presented by
Zhdanenko et al. [24]. This demonstration setup comprised cars, data collectors, analytical entities, and
MEC orchestrator, showcasing also the impact of MEC server selection on the latency. In particular, the
role of the data collectors is to aggregate the data from vehicles, such as GPS position and estimated
changes in position over time. Furthermore, the analytical entities coordinate activities of all vehicles
in their network in order to avoid collisions by pre-empting the next positions of vehicular traffic.
The MEC orchestrator selects one MEC server based on any of the following criteria: (i) static cloud
(no migration), (ii) distance-based MEC, (iii) load-based MEC, and (iv) distance and load-based MEC
citeZhdanenko2019. The total delay as a KPI would depend on the decision that MEC orchestrator
takes. However, in their demo-based paper, Zhdanenko et al. present only a high-level architecture of
the aforementioned system, without getting into details about particular orchestration solutions.

One of the rare attempts to test MANO systems was introduced by Peuster et al. [25] recently. The
main focus of their work is the test platform prototype that they developed to emulate up to 1024 Points
of Presence (PoPs) on a single physical machine, which needs to be managed and orchestrated. Within
the confines of their testing prototype, Peuster et al. [25] presented the concept of emulation-based
smoke testing, used for automated, large-scale testing of two versions of OSM, i.e., OSM Release Three
and Release Four.

Our approach to evaluate different MANO tools extends the perspective presented in the works
we studied, since we: (i) map the architecture of MANO solutions to the proposed closed-loop life-cycle
management and orchestration, emphasizing its importance towards automation of network service
and resource management and orchestration in vehicular communications, (ii) provide an extensive
analysis of the most used orchestration tools based on their features, and finally (iii) compare two
widely recognized MANO solutions, i.e., Open Baton (Release Six) and OSM (Release Six), based on
their performance in terms of instantiation delay, and their isolated features. The thorough feature
and performance analysis that we performed tackles the suitability of these existing MANO solutions
for orchestrating realistic latency-sensitive vehicular applications, and their readiness to respond to
dynamics in vehicular environment.

Sensors 2020, 20, 3852 7 of 28

Table 2. Management and orchestration of resources and services within MEC.

Research Direction Approach Processes Work

Challenges (vehicles’ high speed,
service continuity, high heterogeneity) [6,8,9,11]

Programmable software framework
for management and orchestration
(SDN, NFV, MEC)

[6–8,11,18,19]
Orchestration

Overview of research projects [9,11]

Control [20]

Theoretical

Monitoring [21–23]

Orchestration
MEC for 5G connected cars [24]

Control

Closed-loop life-cycle
management and orchestration

Practical

Monitoring MANO evaluation [25]

3. The Closed-Loop Life-Cycle Management of Network Services in MEC

Within the confines of this section, we present our first contribution stated in the Introduction,
i.e., we present our vision of automated closed-loop life-cycle management of network services
and resources, and map ETSI NFV MEC MANO framework to this closed-loop. The demand for
transition, from a traditional manual network service management toward automation, is described
in terms of: (i) need to cope with strong heterogeneity in network resources, technologies, vendors,
and operators, (ii) achieving ultra-low latency to fulfill strict requirements for various automotive
use cases (such as active driving safety assistance, road traffic monitoring, cooperative manoeuvring,
in-vehicle infotainment, emergency situations, among others), as high levels of other QoS and QoE
parameters for vehicular applications, and (iii) being less prone to dynamic changes in mobile data
traffic and radio conditions caused by high speed mobile users (i.e., vehicles). The consolidation of
all the aforementioned strict requirements is a challenging task, pressing an urgent need for automation
of network service and resource management and orchestration. As illustrated in Figure 1b, we present
this phenomena in the form of closed-loop life-cycle management of network services as an essential
synergy between: (i) Orchestration, (ii) Control, and (iii) Monitoring.

Although separated, these three branches are exceedingly dependent on each other, with the
ultimate goal to facilitate the whole network service management process.

In particular, to make reliable decisions upon vehicular and network services, it is inevitable for
the orchestration entity to receive a real monitoring report from the monitoring entity. Furthermore,
control entities that implement orchestration decisions have to consider monitoring input in order to
track the changes, and to tweak the network services’ configuration based on these changes. Therefore,
to be able to extract the potential of each process, and to enable automation of MANO operations
in MEC and 5G, the synchronization of these parallel, but interconnected, processes is inevitable.
In this section we present each of these processes forming the closed-loop, and discuss the importance
of their particular share in the automation of network service life-cycle management.

3.1. Orchestration and Control

To facilitate MEC’s incorporation into upcoming new generations of communication networks,
and to enable better understanding of service and resource orchestration, ETSI formed an Industry
Specification Group (ISG) to create a standardized and open environment, which enables the efficient
and seamless integration of diverse applications from different vendors, service providers, and third
parties [26]. ETSI NFV ISG defines NFV architectural framework, which is presented in Figure 2,
altogether with the constituent elements and reference points needed for hosting applications within

Sensors 2020, 20, 3852 8 of 28

MEC platform. From the automated closed-loop life-cycle management perspective, such architectural
framework is depicted in Figure 3, illustrating how we grouped the essential architectural elements
into the orchestration, control, and monitoring categories. Therefore, due to their coexistence within
ETSI framework, as well as their strong interdependence, the impact of orchestration and control is
jointly discussed in this section.

MEC

Operation support system (OSS)

NFV orchestrator
(NFVO)

MEC platform
manager - NFV

(MEPM-V)
VNF

manager
(VNFM)

VNF
manager
(VNFM)
VNF

manager
(VNFM)
VNF

manager
(VNFM)

MEC platform

MEC app
(VNF)

NFV infrastructure (NFVI) Virtualization infrastructure manager (VIM)

NFV NFV

NFV

NFV

NFV

MECMEC NFV

NFV-MEC

MEC

MEC application orchestrator
(MEAO)

NFV NFV

NFV

NFV-MEC

NFV-MEC

NFV

CFS portal MEC

Figure 2. ETSI NFV MEC architectural framework.

The two main components of ETSI NFV MEC architecture are NFV Orchestrator (NFVO) and VNF
Manager (VNFM), mutually assembling a so-called ETSI NFV MANO [27]. The NFVO, therefore,
entails the orchestration functions, while VNFM stands for the control entity in charge of the life-cycle
management of VNFs (i.e., VNF instantiation, scaling, terminating, etc.), as building blocks of
the network services.

The advantage of this open source architecture lays in facilitated implementation of an NFV
architecture, increasing the likelihood of interoperability among diverse NFV implementations. The last
is particularly important to emphasize, since different MEC platforms comprise several virtualized
and physical resources, diverse services, and applications of various stakeholders. In such strongly
heterogeneous environment, interoperability plays a crucial role, which can be assured only by
following the standardization guidelines and recommendations.

3.1.1. Orchestration

The orchestration comprises processes of automation, coordination, and management of
deployment and operation of network services [11]. In particular, the NFV architecture and
orchestration framework proposed by ETSI establishes the following three domains: (i) VNFs,
as software defined network functions, (ii) NFV Infrastructure (NFVI), consisted of hardware
and software components for deploying VNFs, and (iii) NFV MANO providing organization and
management of NFVI, which is responsible for the life-cycle management of VNFs, i.e., network
services [9,20]. As Figure 3 clearly depicts, the orchestration in such architectural framework spans two
different blocks, i.e., MEC application orchestrator and NFVO, which orchestrate life-cycle management
operations of MEC applications and network services, respectively.

According to Taleb et al. [9], the true impact of MEC paradigm relies on the service orchestration
capabilities as well as on the interaction with network architecture. Being aligned with ETSI NFV
framework, MEC framework (Figure 2) includes virtualized infrastructure, as well as applications,
and VNFs deployed on top of it. Taleb et al. [9] consider the service-related attributes such as:
resource allocation, service placement, edge selection, and reliability, as of particular relevance for
the efficient orchestration. In the context of resource allocation, Taleb et al. [9] provide an overview
of research efforts to study how the efficient resource allocation strategies impact the overall process

Sensors 2020, 20, 3852 9 of 28

of orchestration. A strongly heterogeneous pool of resources (virtualized and physical) is present
within MEC platforms, being allocated to serve various services and applications installed on top
of the platforms. Hence, it is expected that the brain of the orchestration process—i.e., orchestrator,
takes care of efficient resource use in order to meet stringent service requirements, such as those
in vehicular networks. In the context of vehicular applications, MEC service placement and MEC
server selection over different platforms is an utmost challenging task due to high speed mobility
and use-case-dependent service deployments. It means that different stakeholders might be included
in the service design and deployment, which depend on the specifications required by different
use-cases. For instance, in cooperative maneuvering use-cases, multiple vehicles are being served by
one or multiple MEC servers. The last case requires multiple instances of service being instantiated
on each edge server, suitable for hosting application. Therefore, the orchestration is in charge of
managing all service instances among different MEC platforms, in a manner which enables achieving
corresponding QoS, QoE, and resource use.

Operation support system (OSS)

NFV orchestrator
(NFVO)

MEC platform
manager - NFV

(MEPM-V)
VNF

manager
(VNFM)

VNF
manager
(VNFM)
VNF

manager
(VNFM)

MEC platform

MEC app
(VNF)

NFV infrastructure (NFVI) Virtualization infrastructure manager (VIM)

NFV NFV NFV

NFV

MEC

MEC application orchestrator
(MEAO)

NFV NFV

NFV-MEC

NFV

CFS portal

Data plane monitoring Control plane monitoring

Orchestration

Monitoring

Control

Figure 3. The closed-loop life-cycle managment of network services mapped to ETSI NFV MEC
architectural framework.

In their survey on network service orchestration, de Sousa et al. [11] claim that the foundations of
orchestration are routed back to the three enabling technologies, i.e., SDN, NFV, and cloud computing.
In regards to that, they explain the interrelation between them stating that the SDN is in charge of
enabling connectivity, NFV manages the network functions, while network service orchestration
governs all the deployment processes of the end-to-end network service. According to the study
presented by de Sousa et al. [11], orchestrators can be classified based on their functional scope,
as follows: (i) service orchestrator—carries out service composition/decomposition, (ii) life-cycle
orchestrator—manages the workflows, processes, and dependencies across service components,
and (iii) resource orchestrator—maps service requests to resources, either virtual or physical. Another
classification is provided based on the operational scope of the orchestrator. Accordingly, domain
orchestrators have an absolute control over all resources that belong to their unique domains, but being
limited to the administrative boundaries. On the other hand, multi-domain orchestrators have
a broader scope but are therefore more complex, enabling end-to-end service orchestration while
spanning different administrative domains [11].

3.1.2. Control

The essential control blocks included in ETSI NFV architectural MEC framework are illustrated
and emphasized in Figure 3. As already stated in the previous section, VNFMs are responsible
for the VNF life-cycle management tasks including, for instance, its instantiation, scaling, pausing,
restarting, and termination. However, VNFM is also in charge of reporting the VNF states to NFVO,
so it can promptly react to changes, and make decisions on VNF placement and relocation. More so

Sensors 2020, 20, 3852 10 of 28

than ever, the dynamic changes in network traffic and service request patterns require continuous
management of services, in terms of allocating more resources, VNF scaling up or down, releasing
unnecessary resources, and terminating, with an ultimate goal to achieve or maintain satisfactory level
of QoS, QoE, and resource use.

Besides VNFMs in the control entity shown in Figure 3, there is a MEC platform manager which:
(i) manages installed MEC applications (e.g., vehicular applications), including informing orchestrator
of relevant events from applications, (ii) provides element management functions to the MEC platform,
and (iii) manages application rules and requirements (such as service authorization, traffic rules,
etc.) [28]. Another role assigned to the platform manager is to control fault reports and performance
measurements about virtualized resources, which are all collected by Virtualized Infrastructure
Manager (VIM) and forwarded to the platform manager for further processing [28].

To enable development and deployment of VNFs, and MEC applications, controlled by
VNFM and MEC platform manager, virtualized infrastructure consisted of computing, storage,
and networking resources requires proper control as well. Therefore, VIM performs the allocation,
management, and releasing of these resources, and prepares the underlying NFVI to run software
images as basis for the required VNFs. As already mentioned, VIM also collects and reports
performance and fault information about resources, delegating the reports to VNFMs. Importantly,
once when it is supported by MANO systems, service relocation/migration will be performed by
VIM [28].

3.2. Monitoring

As we identified monitoring as one of the three crucial segments of closed-loop life-cycle
management of vehicular services in 5G networks enhanced by MEC, this section summarizes the main
research efforts towards monitoring network services to improve management and orchestration
efficiency. In general, the overall monitoring process has to ensure that each network service is running
properly, by extracting the critical information from the physical or virtual nodes (i.e., network
functions, links, etc.), and sending important notifications to the orchestration and control entities.
It comprises data collection and information extraction, which are directly performed by monitoring
entity shown in Figure 3. The extracted information is further leveraged by orchestration plane
which makes corrective decisions. Afterwards, the control entity performs the actions implied from
the orchestration decisions, which might include resource re-arrangement, VNF/service migration,
scaling, and terminating.

The project 5GTango [22] has recently recognized the importance of having an adequate
monitoring tool to be embedded into automated management system in 5G networks. Therefore,
the project consortium [23] has identified several constraints of currently available monitoring tools,
which limit their usage in 5G networks, as follows:

• intrusiveness for short-lived network function instances
• not being able to follow the pace of dynamic management
• not covering the requirements for both container-based and hypervisor/VM-based network

function deployments
• not being suitable for collecting data from different cloud environments.

Taking into account the aforementioned characteristics which constrain monitoring of network
services, incorporation of a monitoring tool with general purposes into the closed-loop life-cycle
management of MEC-based vehicular services is not a straightforward task. Although theoretical,
an effort to approach this problem is presented by Celdran et al. [21]. In their study of automatic
monitoring for 5G networks, Celdran et al. [21] note that monitoring has to be included within
automated management of 5G services, since otherwise managing monitoring of network services
would be impossible to perform due to the enormous number of connected devices and their high
mobility. The authors provide an important aspect for isolating the information which needs to

Sensors 2020, 20, 3852 11 of 28

be monitored, in order to provide necessary input for network service life-cycle management and
orchestration with an ultimate goal to improve QoS and resource use.

Thus, there are two distinct types of information to be monitored: (i) Data-related Information
(DRI), such as information contained in network flows, and (ii) Control-related Information (CRI) —i.e.,
users’ mobility, network infrastructure location, number of active users, percentage of CPU and storage
consumed by the network service, etc. The CRI is of particular importance for ensuring the correct
provision of monitoring network services, as it directly affects the network service orchestration process
and the corrective actions that need to be derived. Therefore, Celdran et al. [21] propose a solution
which incorporates monitoring into the architecture oriented toward 5G networks, which integrates
SDN and ETSI NFV architectural proposal. To adequately manage the monitoring process, they propose
to monitor control and data plane separately (Figure 3). With a specific focus on the control plane, i.e.,
gathering CRI, the architectural components (e.g., VNFM, VIM, SDN applications, etc.) expose the
information to CRI monitoring component, which therefore aggregates all the upcoming information
and forwards it to the decision making entities. In such asset, the monitoring on the VNF level can be
performed, tweaking resources allocated to each VNF based on the decisions made in orchestrator.

Currently, there are various monitoring tools available for different purposes, and for instance,
cloud monitoring has a resourceful research background. However, all of these tools are customized
to the specific types of VIM (e.g., OpenStack [29], Amazon Web Services (AWS) [30], VMWare [31],
OpenVIM [32], etc.), making them dependent on the specific virtualized infrastructure, which is hard
to scale especially in such heterogeneous environment as MEC in 5G. For instance, the most popular
monitoring solutions for OpenStack are Ceilometer and Nagios, which meter the data related to
OpenStack resources such as compute, networking, and storage. In case of AWS, there is CloudWatch
which monitors Amazon EC2 instances, Amazon RDS databases, and Amazon DynamoDB, and sets
alarms with specific priorities based on the severity and importance of the information that is being
monitored. Hamid and Shah [33] assess the performance analysis of the aforementioned types of
monitoring tools, including vROPS which is used for monitoring VMWare resources. Their effort
to integrate AWS monitoring support into the Open Source MANO orchestration tool is presented
in [33], in which they elaborate on the idea to create an integral monitoring component which
will consist of various plugins customized to different VIMs. In particular, they detail on how to
create plugin for monitoring AWS resources, aiming to automatize the overall monitoring process
by excluding the need for manual configurations. Such active monitoring of individual resources
that belong to AWS cloud enables proactive and automated troubleshooting and self-healing of
resources [33]. However, due to their strong dependence on the specific VIM types, the capabilities of
available monitoring tools are limited, and therefore research in this field should be further intensified.

4. A Feature Based Analysis of Existing MANO Tools

As stated by our second contribution in the Introduction, in this section we present an
extensive feature-based analysis of existing open source MANO tools, which are widely recognized
in both academia and industry circles. Through a thorough examination and study of the available
documentation and research papers that tackle a particular MANO tool, we isolated key features
that need to be taken into account when studying these tools. We find such analysis as notably
important for the future research in the field of resource and service orchestration, because it provides
a summarized information on the tools which are likely to be used in the real deployment, and can be
used as guidelines for future extensions of existing orchestrators. Each particular feature is essential
to consider, as it highly affects the performance of the tools and their ability to get customized to
different experimental environments.

Based on the work provided by Taleb et al. and de Sousa et al. [9,11], the open source tools
that attracted significant attention in the past few years are Open Network Automation Platform
(ONAP), Open Baton, Sonata (5GTango), OSM, Tacker, Cloudify, X-MANO, TeNoR, and Escape.
Since the background information for each of these tools, such as the research projects in whose

Sensors 2020, 20, 3852 12 of 28

scope the tool was developed, is already presented in aforementioned work, here we do not present
the specific project and tool details. Therefore, in Tables 3–5, we map the feature types to their
corresponding metrics for each MANO tool that we took into consideration, and the brief discussion
based on each feature is presented as follows.

Table 3. A feature-based analysis of existing ETSI NFV MANO systems—part 1.

Feature Type ONAP Open Baton Sonata OSM

number of
vCPUs heavy

minimal version: light
full version: heavy light

minimal version: light
full version: light

RAM heavy
minimal version: light
full version: heavy medium

minimal version: light
full version: mediumResource

footprint storage heavy
minimal version: light
full version: light heavy

minimal version: light
full version: medium

Messaging
bus

Microservice
Bus RabbitMQ RabbitMQ RabbitMQ

Infrastructure
adaptation (VIM)

OpenStack,
Azzure, VMWare,
and Wind River

OpenStack,
Amazon,
Docker,
Test

OpenStack,
Kubernetes,
Sonata
Emulator

OpenStack,
VMWare, AWS,
OpenVIM

Virtualization
environment VMs (currently) VMs and containers containers VMs

1. instantiation 1. instantiation 1. placement 1. modelling

2. configuration 2. configuration 2. on-boarding 2. on-boarding

3. starting 3. instantiation 3. NS creation
3. elastic scaling 4. stopping 4. scaling in/out 4. NS operation

5. terminating

VNF
life-cycle

operations 4. automatic recovery
from resource failure 6. scaling-in 5. termination 5. NS finalization

VNF
descriptor TOSCA, YANG

TAR,
CSAR (TOSCA)

domain specific
language similar
to TOSCA and HOT

YAML-based
documents

VNF
package

VNF
image N/A

QCOW work
in progress N/A QCOW

VNF healthy
environment

support

various packaging
and validation
tools
available and
integrated

no yes no

Integrated
monitoring system yes

no, connecting to
various systems
via plugin
mechanism
(Zabbix plugin)

yes (advanced
real-time
monitoring system)

no, plugins for
different
VIMs available

1. deployment 1. deployment
1. life-cycle
management of
NSs, slices, VNFs

2. configuration, 2 managing PoPs 2. management of SLA

3. monitoring 3. catalogue
3. performing VIMs,
WIMs,
end Endpoints

1. NS/VNF on-
boarding

4. restart 4. marketplace 4. monitoring KPIs

5. clustering and scaling 5. launching NSD 5. catalogue 2. lifecycle

6. upgrade

Feature palette

7. deletion 6. on-boarding NSD 6. specifying QoS
requirements links

3. fault and
performance
management

Interfaces
Portal, Dashboard,
Use case UI,
External APIs, CLI

Dashboard (GUI),
CLI

Portal (GUI),
WEB interface, CLI

Dashboard (GUI),
WEB interface, CLI

Operating system Ubuntu Ubuntu 14.04/16.04 Ubuntu Ubuntu 16.04

Sensors 2020, 20, 3852 13 of 28

Table 4. A feature-based analysis of existing ETSI NFV MANO systems—part 2.

Feature Type
MANO System

Tacker Cloudify X-MANO TeNoR Escape

number of
vCPUs medium medium

RAM medium mediumResource
footprint storage heavy light-heavy

N/A N/A N/A

Messaging
bus RabbitMQ RabbitMQ RabbitMQ RabbitMQ ZeroMQ

Infrastructure
adaptation

VIM: OpenStack
and Kubernetes

VIM: AWS, Azure,
OpenStack, Vsphere N/A

VIM: OpenStack,
Open Daylight VIM: OpenStack

Virtualization
environment VMs and containers VMs and containers VMs VMs containers

1. event-stream
processing 1. creation 1. start

1. initiate/start/
stop NF

2. metrics queueing 2. stop
2. connect/
disconnect

3. aggregation 2. chaining 3. restart

4. scale-in

VNF
life-cycle

operations
N/A

4. analysis, etc. 3. deletion 5. scale-out

3. NF to/from
switch

VNF
package

VNF
descriptor TOSCA TOSCA

JSON file,
multi-domain
NS descriptor:
YAML

HOT YANG

VNF
image N/A QCOW N/A N/A N/A

VNF healthy
environment

support
no no no no no

Integrated
monitoring

system

no, drivers for
Aodh, and
Ceilometer

yes
no, plugin
for Zabbix

no, plugin for
VIM monitoring
and Apache
Cassandra

no

1. uploading and
deleting blueprints

1. SDN domain
manager

2. keep a directory
of blueprints

1. NS/VNF
Monitoring

1. VNF Management:
VNF Catalog and
VNFM

3. create multiple
deployments for
each blueprint,

1. VNF catalogues 2. Internal domain
manager

4. execute workflows
2. NS/VNF
provisioning

5. execute healing and
scaling

3. Remote
domain manager

6. view application’s
topology

2. NS management
panel

7. retrieve events
3. Service Mapping 4. OpenStack

domain manager

8. use plugins

9. view metrics

Feature
palette

2. NFV Orchestration:
VIM Management,
VNFFG Catalogue,
VNFFG Manager,
NS Catalogue,
NS Manager 10. search logs

3. statistics panel
(visualize and export
collected monitoring
information)

4. SLA Enforcement 5. Universal Node
Domain manager

Interfaces Horizon and CLI CLI, WEB UI
Customer portal
(GUI) N/A REST-API, GUI

Operating
system

1. CentOS, Redhat
2. Debian and Ubuntu

1. RHEL/CentOS 6.x
2. RHEL/CentOS 7.x
3. Ubuntu 14.x/16.x/18.x
4. Windows 2008
and later

Ubuntu 14.04 LTS,
Windows 8.1 and
Windows 10

Ubuntu 14.04 Ubuntu 16.04

Resource footprint: It embodies one of the fundamental requirements prior to experimenting
with a MANO tool, because it presents the amount of resources (such as number of virtual or physical
machines, RAM, number of vCPUs, storage, etc.) needed for the installation and proper work.
To make the result comprehensible, we present three categories, i.e., light, medium, and heavy, and
map the required resources to them as presented in Table 6. Concerning the resource footprint,
the three categories presented within Table 6 can help readers to resolve where is a certain MANO
solution positioned on the scale from being lightweight to resource-hungry. The categories are based
on the number of virtual CPUs that each MANO solution requires for its proper work, as well as
the optimal values of RAM and storage. For example, the light MANO solutions can be successfully

Sensors 2020, 20, 3852 14 of 28

deployed inside a VM on the host, while medium, and especially heavy solutions, in most cases require
dedicated resourceful bare-metal servers to efficiently perform their tasks.

Table 5. A feature-based analysis of existing ETSI NFV MANO systems.

Feature Type
MANO System

ONAP Open Baton Sonata
(5G Tango) OSM Tacker Cloudify X-MANO TeNoR Escape

NFVO yes yes yes yes yes not fully yes yes yesETSI NFV MANO
compliance VNFM yes yes yes yes yes not fully yes yes no

Multi-domain
support yes no no no no no yes yes yes

Multi-tenancy support
(Network slicing) yes yes yes yes no no N/A N/A N/A

Table 6. Resource footprint categories for MANO tools.

Light Medium Heavy

number of
vCPUs (N) 2 ≤ N ≤ 4 4 < N ≤ 8 N > 8

RAM (R) R ≤ 4 GB 4 GB < R ≤ 8 GB R > 8 GB

storage (S) S ≤ 20 GB 20 GB < S ≤ 40 GB S > 40 GB

In Table 3 and its extension (Table 4), the resource footprint is shown for each tool. It can be
seen that ONAP is the heaviest in terms of all three resource components, which is expected due
to its extensiveness, strong credibility, and relevance for the industry as well. On the other hand,
Open Baton and OSM offer two installation possibilities, i.e., minimal and full, which differ in number
of supported components (e.g., NFVO, VNFM, drivers for monitoring plugins, drivers for different
VIMs, etc.). However, it should be noted that MANO tools that connect to VIMs such as OpenStack,
require additional machines to install VIM, which in particular needs 4 vCPUs, 8 GB RAM, and more
than 80 GB of disk space per se.

Messaging bus: This specific component is essential for enabling either synchronous
or asynchronous communication between different MANO components, offering message exchange in
a reliable way. The overview of two widely used messaging buses that are also used within MANO
solutions, i.e., RabbitMQ and ZeroMQ, is presented in Table 7. Table 7 depicts the main differences
between these two messaging buses in terms of the message exchange mode, message protocol, the
mode of queueing, and their complexity. In particular, a complexity refers to the source code of
the messaging bus, i.e., the number of lines of code needed to realize routing, load balancing, and
persistent message queueing. As it can be seen from the Tables 3 and 4, the great majority of tools use
RabbitMQ messaging bus, due to its powerful and flexible operation. RabbitMQ is an open-source
general purpose message broker that implements a variety of messaging protocols, with Advanced
Message Queueing Protocol (AMQP) among them. In MEC-based MANO case, RabbitMQ provides
MEC applications with a platform to send and receive messages, connect to each other, and scale.
It is performed through different versions of point to point, request/reply, and pub-sub communication
style patterns, which enable publishers to send messages to exchanges (central nodes), and consumers
to retrieve messages from queues [34]. Due to this simplistic operation mode which enables routing,
load balancing, and persistent message queuing in terms of several lines of code, RabbitMQ is easy to
use and deploy, and therefore, it is reasonable that most of the MANO solution developers opt for this
messaging broker. However, it inevitably generates additional latency because of message queuing
on a central node. In regards to that, ZeroMQ [35], engaged by Escape, is a lightweight substitute for
RabbitMQ, as it especially addresses latency constrained networking scenarios such as autonomous
driving. However, the increased complexity of this solution is a significant disadvantage in comparison
with RabbitMQ. Taking into account the importance of low-latency for vehicular applications, decision

Sensors 2020, 20, 3852 15 of 28

upon messaging system should be taken with a prominent attention, studying and benchmarking both
RabbitMQ and ZeroMQ to find a trade-off.

Table 7. Overview of messaging buses.

Messaging Bus Message Exchange Message Protocol Queueing Complexity

RabbitMQ synchronous/asynchronous
Advanced Message

Queueing Protocol (AMQP) via centralized node low

ZeroMQ asynchronous
ZeroMQ Message

Transport Protocol (ZMTP) decentralized high

Infrastructure adaptation: Using the term infrastructure adaptation, we consider the capability
of the MANO tool to adapt to different types of VIM. The more VIM drivers supported by tool,
the more flexibility in experimentation and deployment is provided. This is significantly important
since different VIM types are more or less complex than the other, and if diverse set of VIM drivers
can be easily installed within MANO, it expands the possibilities to combine resources from different
virtualized infrastructures. All studied tools support OpenStack, as a widely used software platform
which offers a plethora of virtualized servers and other resources to customers. However, due to
the increased complexity in configuring OpenStack to work with a particular MANO tool, the support
for additional VIM drivers that can be easily configured (e.g., AWS) should be more accentuated
and motivated.

Virtualization environment: Despite the enormous popularity of Virtual Machines (VMs),
the container-based virtualization is now gaining momentum, due to its capability to share the host
kernel with user-space isolation. There is already a solid research conducted on capabilities of
both VM and container-based virtualization, studying the benefits and limitations of both [9,11].
Tackling the resource availability within the MEC platforms, which is limited compared to the large
and resourceful data-centers, the lightweight virtualization, and orchestration solutions for small-size
programmable devices are required. Delivering a lightweight deployment of services and applications,
containerization seems to be the best candidate for deployment of emerging 5G technologies such
as NFV and MEC [20]. Therefore, the MANO tools with support for a container-based virtualization
are considered to be profoundly interesting for future MEC-oriented research. The aforementioned
enables orchestration and management of the latency constrained applications, placed and deployed
within the edge of the vehicular networks.

VNF life-cycle operations: Depending on the type of the MANO tool, a certain number of life-cycle
management operations is supported. Keeping in mind ONAP’s superiority and extensiveness
compared to other tools, a support for a plentiful set of operations is expected. If we tend to approach
the study of tools with lower complexity and lighter installation, most of the remaining tools provide
support for number of operations of similar scale. Importantly, all of the tools enable three fundamental
actions, i.e., instantiation, scaling, and termination. In particular, instantiation and on-boarding
operations are usually tightly coupled. On-boarding means transferring appropriate image file
altogether with VNF Descriptor (VNFD) and Network Service Descriptor (NSD), from NFVO to
VIM via VNFM. In that phase, VIM allocates resources required for such VNF and network service,
based on the specified flavor. On the other hand, instantiation is represented as a phase of booting-up
a system based on the received image, and installing all dependencies stated in descriptors, which
are needed for VNF or network service to run properly. In case of scaling, more resources are needed
than it was initially allocated by VIM. Thus, based on the instruction from NFVO, VIM re-allocates
resources, and in case of termination it releases the resources.

VNF package: A VNF package includes a corresponding VNFD that will be used to describe a VNF,
as a part of the service chain that orchestrator aims to launch on top of the virtualized infrastructure.
Besides VNFD, which provides a broader communication compatibility among operators, there
is an NSD as well, containing description of the whole network service. Depending on the tool,

Sensors 2020, 20, 3852 16 of 28

these descriptors are usually written following some of the well-known standards, such as: Topology
and Orchestration Specification for Cloud Applications (TOSCA), Yet Another Next Generation
(YANG), and Heat Orchestration Template (HOT). For instance, TOSCA is a standard used to specify
services and their relations on a cloud computing view, while YANG represents a data modeling
language for configuration and state data manipulated by the network configuration, designed by
IETF. As with TOSCA, HOT in particular, describes the resources and the relationship among them.
However, being much more generic and able to automate any application production process, TOSCA
is widely used for describing VNFs and network services. Nevertheless, given the broad support and
availability of all three standards, we consider TOSCA, YANG, and HOT suitable for the orchestration
solutions that we tackle in this paper. Finally, besides descriptors, a VNF package usually includes
a VNF image which needs to be available on the corresponding VIM, so that Element Management
System (EMS) entities are provided with an adequate image type for launching VNF-customized VMs.

VNF healthy environment support: This feature is quite specific since it is only available in ONAP
and Sonata, representing incorporation of VNF self-healing capabilities such as those provided by
integrated validation tools. In case of large-scale usage of the tools in industry and production, such
capability is essential.

Integrated monitoring system: Recalling the closed-loop life-cycle management, which was
presented within Section 3, and mapped to the ETSI NFV MEC architectural framework, there is a huge
potential in integrating a monitoring system into the MANO solution. Such possibility decreases the
delay in communication between monitoring and orchestration and control entities, therefore providing
real-time information gathered from the measurements. Although some of the tools (e.g., ONAP,
Sonata, and Cloudify) incorporate a tool-customized monitoring systems into their architectures, most
of the studied MANO solutions still require installing plugins for external monitoring (such as Grafana,
Zabbix, etc.).

Feature palette: It comprises different capabilities that MANO tool can provide to the users once
it is properly installed. The palette is usually reached through some tool-specific Graphical User
Interface (GUI), and in most cases it shows the actions that can be taken during the VNF life-cycle
management.

Interfaces: Almost all of the encompassed MANO tools provide work on the resource and
service orchestration, specific component configuration, actions from the life-cycle management set,
and various activities from the feature palette, through both GUI—usually represented as a dashboard,
and a Command Line Interface (CLI). Understanding of all the processes of VIM registration, creating
VNFDs and NSDs, on-boarding VNFs, launching network services, etc., is facilitated by providing
a corresponding GUI, as it is more representative than a usual CLI. Although the installation of each
tool must be obtained through the CLI, representing the feature palette within a GUI-based dashboard
is a plus.

Operating system: This feature only reflects the requirements based on the fundamental operating
system, required for installation and proper work of the MANO tool.

ETSI NFV MANO compliance: In general, in order to expand the exploitability of any software
tool, whether it is MANO or not, the standardization plays a key role as it assures that the
tool meets certain requirements that guarantee the proper work in various conditions. Having
ETSI NFV MANO framework (Figure 2) as a reference, it is unlikely that a tool with no proper
compliance will be considered to be a candidate for the resource and service orchestration in
MEC-enhanced vehicular networks, because ETSI has a leader role in standardizing NFV and MEC.
The necessity for standardization in aforementioned context is reasonable, especially because of
the heterogeneity in MEC platforms. Therefore, although developed and deployed by different
vendors/operators/application designers and developers, various MEC platforms and applications
can be consolidated and able to cooperate if the standardization requirements are met.

Multi-domain support: The multi-domain capabilities represent a strong contributing factor to
filter the orchestration solutions, being characterized by capabilities to establish a connection with

Sensors 2020, 20, 3852 17 of 28

MEC from the other domain using technologies such as OpenVPN, and to enable communication
among the resources in different administrative and technological domains.

Multi-tenancy support: Due to the ubiquitous popularity of network slicing paradigm, being able
to allocate different slices of network resources to different QoS and QoE requirements is useful for
the experimentation.

5. A Performance Analysis of Existing MANO Tools

Linked to the third contribution point (presented in the Introduction), this section shows
a performance analysis of two open source MANO solutions, i.e., Open Baton and OSM, aiming
at inspecting their suitability for orchestrating realistic latency-sensitive vehicular applications. First,
we outline the experimentation setup by presenting: (i) the type of network service that we used for
testing, (ii) the metrics that we defined in order to evaluate the performance of MANO solutions,
(iii) installation steps and setting-up environment, and (iv) description of testbed that we used for
assessing a performance evaluation. Second, we present the results that we gathered during the
measurement of the KPIs presented in Section 5.1.2, and discuss the results and point at the clear
articulation of incorporating these MANO tools into the framework of automated closed-loop life-cycle
management of vehicular services.

5.1. Experimentation Setup

5.1.1. Network Service

As a service that needs to be dynamically instantiated, we chose CDN as a Service (CDNaaS), for
infotainment purposes within a vehicular context (e.g., loading Google maps with reduced latency),
thereby investigating whether MANO tools are capable of enabling dynamic service creation and
management. As Taleb et al. presented in [36], CDNaaS represents a service instance of virtual CDN,
with aim to strategically instantiate and place CDN VNF instances over the cloud/edge nearby users.
This way CDN VNFs can be dynamically instantiated based on users’ needs, content popularity,
viewers’ geographical distribution, mobility patterns, etc. Therefore, in both cases of OSM and Open
Baton, we instantiate CDN VNFs as cache servers for a specific website (such as Google Maps), so
the users get the website content with an expectedly lower perceptible latency. The motivation to
experiment with such type of service is its particular edge-suitability, which means that dynamic
instantiation of necessary CDN services significantly affects users’ latency [36–39]. As measuring
latency at the user equipment side is out of scope of our paper, we leverage the results provided
in [36–39], which show the latency-related benefits of deploying CDN at the network edge. Thus, the
scope of our performance analysis is to measure overall instantiation delay, as the time needed for
MANO system to instantiate a network service on top of MEC.

For the purpose of testing, we created four types of network services, i.e., Service Function Chains
(SFCs). Each SFC consist of one or more VNFs that are chained in order to deliver the full functionality
of a final network service. As presented in Table 8, SFCs that we created are differentiated by number
of VNFs that they contain, i.e., they contain one, two, three, and seven VNFs, respectively. To create a
fair environment for benchmarking MANO tools, we used the same types of network services for both
tools, therefore, customizing VNF and network service descriptors, so they can be interpreted by both
NFVOs. In case of Experiment 2, instead of VNF descriptors, we built a necessary Docker image, and
made it available at NFVI, so Open Baton could make use of it while instantiating service in the form
of container.

Sensors 2020, 20, 3852 18 of 28

Table 8. Types of service function chains.

Network Service (Service Function Chain) Number of VNFs in the Chain VNFs

SFC_1 1 VNF_1

SFC_2 2 VNF_1, VNF_2

SFC_3 3 VNF_1, VNF_2, VNF_3

SFC_4 7
VNF_1, VNF_2, VNF_3,

VNF_4, VNF_5, VNF_6, VNF_7

5.1.2. Metrics

To assess performance evaluation of Open Baton and OSM, within the Experiment 1 we considered:
(1) Overall Instantiation Delay (OID) of network service, and (2) CPU and RAM use. Accordingly,
in the Experiment 2, we benchmarked container-based, and VM-based performance of network
service instantiation, in terms of its duration, i.e., OID. As defined in Table 9, the instantiation delay
is the overall time needed for a network service to be on-boarded and instantiated on top of the
NFVI. To illustratively explain the aforementioned KPI, we created a sequence diagram (Figure 4),
which presents the communication between particular MANO components towards instantiating
network service.

Table 9. Overview of metrics.

Metric Definition

Overall instantiation delay (OID)
The overall time needed for a network service to be on-boarded
and instantiated on top of the NFV Infrastructure (NFVI).

CPU use
The average usage of CPU processing resources, i.e., the amount
of work with which a MANO solution burdens the CPU of
the underlying host.

RAM use The average allocated memory needed for a MANO operation.

VNFM Platform VIM

Runs VM/container

NFVO

3.	Resource	allocation	request	(image	ID)

Allocates resources

Prepares NS descriptor

2.	NS	descriptor	+
VNF	package

NS	instance

Config

6.	Config	response

7.	Config	response

1.	Instantiate	NS

4.	Resource	allocation	response

5.	Config	request

Figure 4. The process of instantiation of network service on top of the NFV infrastructure.

Sensors 2020, 20, 3852 19 of 28

Therefore, OID is a particular metric that can be used to evaluate performance of MANO solutions,
based on the time they need to on-board, and to instantiate a network service. Besides OID, we also
measured CPU, and RAM use. In case of CPU, use is measured as an average usage of processing
resources, i.e., the amount of work with which a MANO solution burdens the CPU of the underlying
host. Accordingly, the usage of RAM means the average allocated memory needed for a MANO
operation.

Some other metrics are run-time metrics that can be used to benchmark MANO’s performance
during service execution, when it is up and running (e.g. scaling in and out). The run-time metrics are
of high importance for MANO performance, as they directly contribute to perceivable KPIs by users.
In particular, when more resources are needed for service operation, orchestrator should re-allocate
resources, and scale-up ongoing network service in order to avoid potential service disruptions.
However, although stated in their documentation that both MANO solutions support run-time
operations, we revealed that it is not the case. Therefore, benchmarking of MANO solutions is limited
on on-boarding and instantiation procedures for now.

5.1.3. Installation and Environment Setup

To approach the experimentation, we created the two following experimental setups:

• Experiment 1: we provide a performance analysis of Open Baton and OSM, and compare them
based on the overall VM instantiation delay, CPU, and RAM use,

• Experiment 2: we examine how Open Baton behaves when different virtualization technologies,
i.e., Containers, and VMs, are used to instantiate network services.

To generate a fair environment for comparison of Open Baton and OSM, we created Experiment 1
in which we used OpenStack as a VIM for both MANO systems. As already shown in Table 3, OSM
Release Six does not provide support for Containers as a virtualization technology, and therefore,
Experiment 2 shows the performance analysis of Open Baton in case it instantiates network services as
Containers, and VMs.

Regarding the overall experimentation setup, Figure 5 displays the MANO components which
were deployed within both of our experiments, altogether with the software components that we used.
In particular, the bottom layer is presented as NFV infrastructure, which hosts VNF chains, i.e., network
services. As Figure 5 clearly depicts, we used OpenStack, and Docker, to make NFV infrastructure
available for instantiating VNFs. Within the middle layer, Prometheus in collaboration with Grafana
was used as an external monitoring tool for OSM, while Open Baton allowed monitoring via Zabbix
external monitoring plugin. Finally, on the upper layer, Open Baton and OSM were installed and set
up to embody the roles of orchestration and control. In Table 10, specific details on installation of Open
Baton, OSM, and OpenStack, are provided.

Table 10. Overview of installation within experiment.

Capabilities
Component Type of Mmachine in Virtual Wall RAM CPU Storage Operating System

OpenStack pcgen4 48 GB 2 × 8 core Intel E5-2650v2 (2.6 GHz) 250 GB Ubuntu 18.04

OSM pcgen5 16 GB 1 × 4 core E3-1220v3 (3.1 GHz) 250 GB Ubuntu 16.04

Open Baton pcgen5 16 GB 1 × 4 core E3-1220v3 (3.1 GHz) 250 GB Ubuntu 16.04

Being aligned to Figure 3, and the way we mapped particular components of ETSI NFV MANO
framework to closed-loop life-cycle management groups (i.e., orchestration, control, and monitoring),
the upper layer in Figure 5 comprises both orchestration and control, which means that both processes
are performed by MANO entities. Thus, Table 11 shows which MANO components belong to
particular process.

Sensors 2020, 20, 3852 20 of 28

Figure 5. Experimentation setup on Virtual Wall testbed.

Table 11. The closed-loop life-cycle management of network services mapped to MANO solutions.

MANO MANO Components

Orchestration Control Monitoring

OpenStack VIM driver

Generic VNFM

Fault management system

Auto-scaling engine
Open Baton NFVO

Network slicing engine

Zabbix plugin

Resource orchestrator OpenStack VIM driver

VNFMOSM Service orchestrator Fault management

Performance
management

The middle layer of experimentation setup in Figure 5 is in charge of monitoring tasks, which
in collaboration with upper layer, closes the loop of automated life-cycle management of network
services.

To realize orchestration of network services and resources, we considered tools with lighter
installation setup, in order to create a lightweight orchestration environment, suitable for resource
constrained MEC platform on the network edge. Due to the capabilities of similar scale (Tables 4 and 5),
we chose Open Baton and OSM for the experimentation and performance analysis. OpenStack is an
open-source software platform for cloud computing, and MEC platform providers consider it as
a suitable solution for enabling MEC infrastructure. Following this trend in both industry and
academia, we installed OpenStack to provide underlying NFV infrastructure whose resources need
to be orchestrated in order to properly host network services. On the other hand, Docker is a platform
that enables developing and running the applications, while separating them from the infrastructure,
so the software can be delivered quickly [40]. In our case, Docker used resources that were available
within the NFV infrastructure on top of which it was installed and configured.

Both MANO solutions are open source platforms with a goal to provide a comprehensive
implementation of the ETSI NFV MANO specification for orchestrating heterogeneous NFV
infrastructures. Open Baton [41] is built by the Fraunhofer Fokus Institute and the Technical University
of Berlin [11]. We installed the latest version which includes OpenStack VIM driver for deploying VNFs
on OpenStack, generic VNFM for instantiation of VNFs, Fault Management System (FMS) for detection

Sensors 2020, 20, 3852 21 of 28

and recovery of VNF faults, Auto Scaling Engine (ASE) for automatic creation and termination of
VNF instances, and Network Slicing Engine (NSE) for ensuring a specific QoS for a network slice
(Tables 10 and 11). OSM [42] is an ETSI-hosted project for delivering open source MANO tool,
and the seventh release was recently launched. Its orchestration functions are divided into two entities:
resource and service orchestrator. As presented in [11], OSM integrates several open source software
initiatives to deliver fundamental ETSI NFV MANO functionalities. In particular, Riftware is used as
a network service orchestrator, OpenMANO as resource orchestrator, and Juju Server as VNFM [11].
We installed OSM Release Six, which enabled the use of service and resource orchestrators, VNFM,
OpenStack VIM driver, and fault management (Tables 10 and 11).

In Table 11, we map installed components of both MANO tools to the closed-loop life-cycle
management and orchestration. A more illustrative representation of mapping Open Baton and
OSM to closed-loop life-cycle management and orchestration, showing their compliance to ETSI NFV
MANO framework at the same time, is presented in Figure 6.

Figure 6. Open Baton and OSM architectures mapped to ETSI NFV MANO.

5.1.4. The Virtual Wall Testbed

For the experimentation setup, we used the Virtual Wall testbed, which is a large scale generic
environment for advanced networking, distributed software, cloud, big data, and scalability research
and testing [43]. In overall, the testbed contains more than 400 bare metal and GPU servers which are
fully configurable in terms of their software installation, as well as the interconnection between network
interfaces. Regarding connectivity, each node has a public IPv6 address as well as public IPv4, and
thus can be easily accessible from any machine inside or outside of testbed environment. As nodes can
be used for wide variety of purposes (such as terminal, server, network node, and impairment node),
we used three of them to install OpenStack, as virtualization infrastructure, altogether with Open
Baton and OSM, as MANO entities [43] (Figure 5). The Virtual Wall testbed is a part of FED4FIRE+ [44]
project, which is the largest federation of next generation internet testbeds in Europe. Additionally,
the testbed is powered by the jFed [45] experimentation toolkit that allows experimenters to push their
code to the nodes. It offers to experimenters the possibility of experiment scheduling and a GUI with
a real-time information of the experiment execution. jFed platform is supported by Linux Containers
(LXC) to submit the code. As shown in Figure 5, we enabled NFV infrastructure resources on top of
the testbed infrastructure, in order to be able to instantiate network services.

Sensors 2020, 20, 3852 22 of 28

5.2. Results

Regarding overall instantiation time, Figure 7a shows that performance of both tools highly
depends on the number of VNFs chained into network service. In particular, Table 8 shows how are
particular VNFs (from VNF_1 to VNF_7) connected to the service chains. If we examine the network
service complexity, as several VNFs that a particular network service chain consists of, we notice the
following:

• Open Baton outperforms OSM in case of service function chains with both lower and higher
complexity (i.e., lower/higher number of VNFs in SFC). This statement is also supported by
a statistical test, i.e., t-test, that is used for inspecting its statistical significance. Thus, we applied
the t-test on the collected OID measurements for both Open Baton and OSM, and as a result we
obtained pvalue = 0.002192. For the significance level of 95%, pvalue larger than 0.05 indicates
acceptance of null hypothesis, i.e., the two samples are equal. Therefore, our result shows that
the difference between measured OID for Open Baton and OSM is also statistically significant
(pvalue < 0.05).

• In Figure 8a,b, the increasing trend from SFC_1 to SFC_4 is somewhat expected due the way
how SFCs are generated (Table 8), i.e., the more VNFs are chained, the more memory and CPU
resources are needed for an SFC to properly run. This trend has a lower slope in case of CPU, since
CDN services that we instantiated as SFCs do not run CPU-intensive tasks. Furthermore, in CPU
(Figure 8b) and RAM (Figure 8a) use results, we did not find significant difference between these
two MANO tools, which was expected due to allocating the same flavors of VNF for both tools.

Open Baton OSM

SFC_1 SFC_2 SFC_3 SFC_4 SFC_1 SFC_2 SFC_3 SFC_4

0

10

20

Service Function Chains

O
ID

 (
s)

Category

VNF_1
VNF_2
VNF_3
VNF_4
VNF_5
VNF_6
VNF_7

(a)

Container VM

SFC_1 SFC_2 SFC_3 SFC_4 SFC_1 SFC_2 SFC_3 SFC_4

0

10

20

Service Function Chains

O
ID

 (
s)

Category

VNF_1
VNF_2
VNF_3
VNF_4
VNF_5
VNF_6
VNF_7

(b)

Figure 7. Management and orchestration in MEC-enhanced vehicular networks. (a) Network service
instantiation delay: Open Baton vs. OSM. (b) Network service instantiation delay: Docker Containers
vs. VMs.

Sensors 2020, 20, 3852 23 of 28

Open Baton OSM

SFC_1 SFC_2 SFC_3 SFC_4 SFC_1 SFC_2 SFC_3 SFC_4

0

500

1000

1500

Service Function Chains

R
A

M
 (

M
B

)

(a)

Open Baton OSM

SFC_1 SFC_2 SFC_3 SFC_4 SFC_1 SFC_2 SFC_3 SFC_4

0

25

50

75

100

Service Function Chains

C
P

U
 (

%
)

(b)

Figure 8. Management and orchestration in MEC-enhanced vehicular networks. (a) RAM use: Open
Baton vs. OSM. (b) CPU use: Open Baton vs. OSM.

Within confines of the aforementioned observations, we can derive the following conclusions,
as perspectives for incorporating Open Baton and OSM into real use-cases of automated closed-loop
life-cycle management in MEC-based vehicular networks.

1. Taking into account a feature-based analysis presented in Section 4 and Table 3, OSM provides
a lightweight solution for orchestration of network services and resources, as it requires much
lower capabilities than Open Baton. Such advantage makes OSM more suitable for installation
and setup on resource constrained edge cloud platform, such as MEC.

2. Regarding compatibility with different VIM environments, the OSM Release 6 supports more
VIM drivers than the last version of Open Baton. Thus, the possibilities of customizing OSM
to various NFV infrastructure types are broader than in Open Baton.

3. Based on our experience during the experimentation, both tools suffer from insufficient and
inconsistent documentation, which complicates the overall process of installation and setting up.

4. As we already emphasized in Section 4, the support for container-based virtualization is important
if we take into account the limited resource availability in MEC platforms. Open Baton supports
containerized network services and applications, which is a significant advantage over OSM.
Although the latest release of OSM supports Kubernetes [46] as VIM, and accordingly enables
containerized service deployment, it is in an early stage, and requires more testing.

5. Aligned to the previous point, results from Experiment 2 shown in Figure 7b show
that container-based service instantiation takes less time for each service type, as expected due to
the lightweight capabilities of Containers in comparison to VMs. Furthermore, in order to inspect
the statistical significance of our results, we applied the t-test on the collected measurements for
OID. The test resulted in pvalue = 0.004332 < 0.05, which indicates that the difference between
OID values for Docker containers and VMs (instantiated upon Open Baton’s guidance), is also
statistically significant. The difference in overall delay between corresponding container and VM
variants are even larger that presented in Figure 7b, because after on-boarding and instantiation
procedures, container-based service is ready to be consumed by users, while VMs instantiated
on top of OpenStack only got their resources and IP addresses, but the automated configuration
of underlying operating system takes 2–3 min more.

Sensors 2020, 20, 3852 24 of 28

6. In both Figure 7a,b, we present the values of OID for each SFC as a stacked value, i.e., we show
how each of the VNFs (from VNF_1 to VNF_7) contributes to the overall OID, needed for this
SFC to be instantiated. In particular, if we take a look at the time needed for SFC_4 to be
instantiated, we can see that VNF_1 contributes to the overall OID the most, while the last three
VNFs (i.e., VNF_5, VNF_6, and VNF_7) take the least time for their instantiation. It can be
depicted in both Figure 7a, and Figure 7b that the impact of the first VNF in the chain on the
overall OID is the highest. However, such result is reasonable, and expected, as each of the VNFs
are spawned by using the same image, which means that the on-boarding procedure is included
in the instantion of VNF_1, and once it is instantiated, all the remaining VNFs will take much less
time, since the image is already available to the VIM.

7. From the perspective of overall instantiation delay, we expect that Open Baton will enable
more suitable environment for realistic vehicular service implementations, consisted of multiple
more or less complex VNFs. As we already elaborated on importance of Ultra-Reliable
Low-Latency Communication (URLLC) in automotive use cases, more attention should be paid
to prompt service instantiation. However, although lower in case of container-based deployment,
instantiation delay for Open Baton is still perceptible, and some pre-emptive methods for
predictive instantiation are needed, so the services can be ready on a MEC platform at the moment
when they are needed.

8. Taking into consideration all findings based on a realistic example of CDNaaS, none of these two
versions of MANO tools are ready to be used in realistic scenarios for vehicular communications,
as run-time operations such as service scaling-in and out, muting, migration, etc., are not
supported yet.

From the conclusions presented above, we see that selecting a MANO tool is not a straightforward
task. Different tools provide sets of multiple benefits, depending on the perspective we have. Therefore,
we presented perspectives for using these two particular MANO tools in MEC-enhanced vehicular
communications. The feature-based and performance analysis that we provided in this paper,
are valuable for both academia and industry, and provide guidelines on facilitated incorporation
of closed-loop life-cycle management in vehicular networks based on 5G and MEC. Additionally,
having extensive feature-based and performance analysis presented in this paper, our analysis can
significantly facilitate development of new MANO tools. Since we focused on Open Baton and OSM
for the performance analysis of MANO solutions, as these are the most suitable solutions for resource
and service management and orchestration within the network edge, our future work will expand
the performance evaluation setup, considering more MANO tools (e.g., a comprehensive tool such as
Sonata—5GTango). In addition, we plan to measure the impact of different MANO tools on the delay
measured at the user equipment, i.e., taking into account the dynamics in network as well. To this end,
we aim at chaining the MEC services to virtualized RAN functions (e.g., OpenRAN paradigm), thereby
performing the closed-loop life-cycle management operations on the configurable service chains from
the edge to the user equipment, making these services tailored to the users’ needs. Furthermore, we
are particularly interested in evaluating performance of different tools based on the service migration,
and other run-time operations, once they are supported and well documented in the existing MANO
solutions.

6. Conclusions

To cope with strong heterogeneity in resources, services, vendors, etc., as well as high dynamicity
in network traffics, followed by high mobility of users in vehicular communication presently,
automation of network service management and orchestration can come up as a solution. As a
study to exploit the features of network management and orchestration aiming to support delay
sensitive applications, in this paper we presented the closed-loop life-cycle management of network
services as an essential collaboration between orchestration, control, and monitoring. Furthermore,
we created a comprehensive feature-based analysis of the most adopted existing MANO solutions.

Sensors 2020, 20, 3852 25 of 28

Finally, we extensively evaluated the performance of Open Baton and OSM, recognizing the main
components of closed-loop life-cycle management in their MANO architectures. Having latency
as a crucial parameter for all latency sensitive vehicular applications, we assessed the overall delay
in service instantiation, in order to explore the contributing factor to overall latency that needs to
be minimized. Regarding the latency requirements at the user equipment side, we further study
the benefits of bringing CDNs to the network edge by leveraging existing works and, in order to
benchmark different MANO tools at the network edge, we measure the service instantiation delay of
each solution. Based on the features and performance analysis of MANO tools, we presented valuable
perspectives for incorporating MANO tools to realistic MEC-enhanced vehicular network scenarios.
Taking into account both feature-based perspective and performance, our thorough analysis of OSM
and Open Baton shows that Open Baton outperforms OSM in case of delay in instantiating CDNaaS
instances. In case Open Baton deploys network service as a Docker container, it significantly reduces
the duration of the overall instantiation process. Nevertheless, due to the limited support for service
scaling, and migration, none of these two particular versions of MANO solutions has reached a level
of maturity to adequately respond to dynamics in realistic vehicular applications.

Therefore, our future work will include more MANO solutions (e.g., a comprehensive tool such
as Sonata—5GTango) in performance analysis, and extended number of run-time metrics, once they
are fully supported. Furthermore, we plan to measure the delay at the user equipment, i.e., inspecting
the dynamics present in network. This research aims at chaining the MEC services to virtualized
RAN functions, thereby performing the closed-loop life-cycle management operations on the use-case
tailored service chains from the edge to the realistic user equipment, such as real vehicles.

Author Contributions: Conceptualization, N.S.-K. and J.M.M.-B.; methodology, N.S.-K; software, N.S.-K.,
E.d.B.e.S., E.M., H.C.C.d.R.; validation, N.S.-K.; investigation, N.S.-K.; resources, all authors; writing—original
draft preparation, N.S.-K.; writing—review and editing, all authors; visualization, N.S.-K.; supervision, J.M.M.B.
and S.A.H.. All authors have read and agreed to the submitted version of the manuscript.

Funding: This research is funded by the European Union’s Horizon 2020 project 5G-CARMEN co-funded by the
EU under grant agreement No. 825012, and the Horizon 2020 Fed4FIRE+ project, Grant Agreement No. 723638..

Acknowledgments: This work has been performed in the framework of the European Union’s Horizon 2020
project 5G-CARMEN co-funded by the EU under grant agreement No. 825012, and the Horizon 2020 Fed4FIRE+
project, Grant Agreement No. 723638. The views expressed are those of the authors and do not necessarily
represent the projects. The Commission is not liable for any use that may be made of any of the information
contained therein.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AMQP Advanced Message Queueing Protocol
ASE Auto Scaling Engine
AWS Amazon Web Services
BS Base Station
CCAM Cooperative, Connected, and Automated Mobility
CDN Content Delivery Network
CDNaaS CDN as a Service
CLI Command Line Interface
CoAP Constrained Application Protocol
CRI Control-related Information
DRI Data-related Information
EMS Element Management System
FMS Fault Management System
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
HOT Heat Orchestration Template

Sensors 2020, 20, 3852 26 of 28

ISG Industry Specification Group
KPI Key Performance Indicator
MANO Management and Orchestration
MDO Multi-Domain Orchestrator
MEC Multi-Access Edge Computing
MQTT MQ Telemetry Transport
NFV Network Function Virtualization
NFVI NFV Infrastructure
NFVO NFV Orchestrator
NOMA Non-orthogonal Multiple Access
NSD Network Service Descriptor
NSE Network Slicing Engine
OBU On Board Unit
OID Overall Instantiation Delay
ONAP Open Network Automation Platform
OSM Open Source MANO
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RSU Roadside Unit
SDN Software Defined Networking
SFC Service Function Chain
TOSCA Topology and Orchestration Specification for Cloud Applications
URLLC Ultra-Reliable Low-Latency Communications
V2N Vehicle to Network
V2V Vehicle to Vehicle
V2X Vehicle to Everything
VIM Virtualized Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFD VNF Descriptor
VNFM VNF Manager
YANG Yet Another Next Generation
ZMTP ZeroMQ Message Transport Protocol

References

1. Shah, S.A.A.; Ahmed, E.; Imran, M.; Zeadally, S. 5G for Vehicular Communications. IEEE Commun. Mag.
2018, 56, 111–117. doi:10.1109/MCOM.2018.1700467.

2. Ning, Z.; Wang, X. Mobile Edge Computing-Enabled 5G Vehicular Networks: Toward the Integration of
Communication and Computing. IEEE Veh. Technol. Mag. 2019, 14, 54–61. doi:10.1109/MVT.2018.2882873.

3. Guo, J.; Song, B.; He, Y.; Yu, F.R.; Sookhak, M. A Survey on Compressed Sensing in Vehicular Infotainment
Systems. IEEE Commun. Surv. Tutor. 2017, 19, 2662–2680. doi:10.1109/COMST.2017.2705027.

4. Abeywardana, R.C.; Sowerby, K.W.; Berber, S.M. Empowering Infotainment Applications: A Multi-Channel
Service Management Framework for Cognitive Radio Enabled Vehicular Ad Hoc Networks. In Proceedings
of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5.
doi:10.1109/VTCSpring.2018.8417749.

5. Su, K.; Mo, Y.; Chen, L.; Chang, W.; Hu, W.; Yu, C.; Tang, J. An In-Vehicle Infotainment Platform for
Integrating Heterogeneous Networks Interconnection. In Proceedings of the 2018 IEEE International
Conference on Consumer Electronics|-Taiwan (ICCE-TW), Taichung, Taiwan, 19–21 May 2018; pp. 1–2.
doi:10.1109/ICCE-China.2018.8448834.

6. Soua, R.; Turcanu, I.; Adamsky, F.; Führer, D.; Engel, T. Multi-Access Edge Computing for Vehicular
Networks: A Position Paper. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps),
Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. doi:10.1109/GLOCOMW.2018.8644392.

https://doi.org/10.1109/MCOM.2018.1700467
https://doi.org/10.1109/MVT.2018.2882873
https://doi.org/10.1109/COMST.2017.2705027
https://doi.org/10.1109/VTCSpring.2018.8417749
https://doi.org/10.1109/ICCE-China.2018.8448834
https://doi.org/10.1109/GLOCOMW.2018.8644392

Sensors 2020, 20, 3852 27 of 28

7. Liu, J.; Wan, J.; Zeng, B.; Wang, Q.; Song, H.; Qiu, M. A Scalable and Quick-Response Software
Defined Vehicular Network Assisted by Mobile Edge Computing. IEEE Commun. Mag. 2017, 55, 94–100.
doi:10.1109/MCOM.2017.1601150.

8. Abdelaziz, A.; Fong, A.; Gani, A.; Khan, S.; Alotaibi, F.; Khan, M. On Software-Defined Wireless
Network (SDWN) Network Virtualization: Challenges and Open Issues. Comput. J. 2017, 60, 1510–1519.
doi:10.1093/comjnl/bxx063.

9. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing:
A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun.
Surv. Tutor. 2017, 19, 1657–1681. doi:10.1109/COMST.2017.2705720.

10. Khan, S.; Gani, A.; Abdul Wahab, A.W.; Guizani, M.; Khan, M.K. Topology Discovery in Software Defined
Networks: Threats, Taxonomy, and State-of-the-Art. IEEE Commun. Surv. Tutor. 2017, 19, 303–324.
doi:10.1109/COMST.2016.2597193.

11. Saraiva de Sousa, N.F.; Lachos Perez, D.A.; Rosa, R.V.; Santos, M.A.; Esteve Rothenberg, C. Network Service
Orchestration: A Survey. Comput. Commun. 2019, 142–143, 69–94. doi:10.1016/j.comcom.2019.04.008.

12. Wang, Y.; Wang, J.; Ge, Y.; Yu, B.; Li, C.; Li, L. MEC support for C-V2X System Architecture. In Proceedings
of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China,
16–19 October 2019; pp. 1375–1379. doi:10.1109/ICCT46805.2019.8947060.

13. Laaroussi, Z.; Morabito, R.; Taleb, T. Service Provisioning in Vehicular Networks Through Edge and Cloud:
An Empirical Analysis. In Proceedings of the 2018 IEEE Conference on Standards for Communications and
Networking (CSCN), Paris, France, 29–31 October 2018; pp. 1–6. doi:10.1109/CSCN.2018.8581855.

14. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation Offloading and Resource Allocation For Cloud
Assisted Mobile Edge Computing in Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956.
doi:10.1109/TVT.2019.2917890.

15. Du, J.; Yu, F.R.; Chu, X.; Feng, J.; Lu, G. Computation Offloading and Resource Allocation in Vehicular
Networks Based on Dual-Side Cost Minimization. IEEE Trans. Veh. Technol. 2019, 68, 1079–1092.
doi:10.1109/TVT.2018.2883156.

16. Hoang, V.H.; Ho, T.M.; Le, L.B. Mobility-aware Computation Offloading in MEC based Vehicular Wireless
Networks. IEEE Commun. Lett. 2020, 24, 466–469. doi:10.1109/LCOMM.2019.2956514.

17. Wang, J.; Feng, D.; Zhang, S.; Tang, J.; Quek, T.Q.S. Computation Offloading for Mobile Edge Computing
Enabled Vehicular Networks. IEEE Access 2019, 7, 62624–62632. doi:10.1109/ACCESS.2019.2915959.

18. Slamnik-Kriještorac, N.; Kremo, H.; Ruffini, M.; Marquez-Barja, J.M. Sharing Distributed and Heterogeneous
Resources toward End-to-End 5G networks: A Comprehensive Survey and a Taxonomy. IEEE Commun.
Surv. Tutor. 2020, 1. doi:10.1109/COMST.2020.3003818.

19. Soenen, T.; Tavernier, W.; Peuster, M.; Vicens, F.; Xilouris, G.; Kolometsos, S.; Kourtis, M.; Colle, D.
Empowering Network Service Developers: Enhanced NFV DevOps and Programmable MANO.
IEEE Commun. Mag. 2019, 57, 89–95. doi:110.1109/MCOM.2019.1800810.

20. Blanco, B.; Oscar, J.; Giannoulakis, I.; Kafetzakis, E.; Peng, S.; Pérez-Romero, J.; Trajkovska, I.;
Khodashenas, P.S.; Goratti, L.; Paolino, M.; et al. Technology Pillars in the Architecture of Future 5G Mobile
Networks: NFV, MEC, and SDN. Comput. Stand. Interfaces 2017, 54, 216–228. doi:10.1016/j.csi.2016.12.007.

21. Celdrán, A.H.; Clemente, G.; Pérez, G.M. Automatic Monitoring Management for 5G Mobile Networks.
In Proceedings of the 12th International Conference on Future Networks and Communications, Leuven,
Belgium, 24–26 July 2017. doi:10.1016/j.procs.2017.06.102.

22. 5G Tango. 5G Tango Project Description, Outcomes, and Objectives. 2020. Available online: https:
//www.5gtango.eu/about-5g-tango/ (accessed on 15 June 2020).

23. 5GTANGO Consortium, G. A Brief Overview of Monitoring Solutions Embraced by 5G MANOs. Available
online: https://www.5gtango.eu/blog/58-a-brief-overview-of-monitoring-solutions-embraced-by-5g-
manos.html (accessed on 15 June 2020).

24. Zhdanenko, O.; Liu, J.; Torre, R.; Mudriievskiy, S.; Salah, H.; Nguyen, G.T.; Fitzek, F.H.P. Demonstration
of Mobile Edge Cloud for 5G Connected Cars. In Proceedings of the 2019 16th IEEE Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–2.
doi:10.1109/CCNC.2019.8651783.

https://doi.org/10.1109/MCOM.2017.1601150
https://doi.org/10.1093/comjnl/bxx063
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/COMST.2016.2597193
https://doi.org/10.1016/j.comcom.2019.04.008
https://doi.org/10.1109/ICCT46805.2019.8947060
https://doi.org/10.1109/CSCN.2018.8581855
https://doi.org/10.1109/TVT.2019.2917890
https://doi.org/10.1109/TVT.2018.2883156
https://doi.org/10.1109/LCOMM.2019.2956514
https://doi.org/10.1109/ACCESS.2019.2915959
https://doi.org/10.1109/COMST.2020.3003818
https://doi.org/110.1109/MCOM.2019.1800810
https://doi.org/10.1016/j.csi.2016.12.007
https://doi.org/10.1016/j.procs.2017.06.102
https://www.5gtango.eu/about-5g-tango/
https://www.5gtango.eu/about-5g-tango/
https://www.5gtango.eu/blog/58-a-brief-overview-of-monitoring-solutions-embraced-by-5g-manos.html
https://www.5gtango.eu/blog/58-a-brief-overview-of-monitoring-solutions-embraced-by-5g-manos.html
https://doi.org/10.1109/CCNC.2019.8651783

Sensors 2020, 20, 3852 28 of 28

25. Peuster, M.; Marchetti, M.; García de Blas, G.; Karl, H. Automated testing of NFV orchestrators against
carrier-grade multi-PoP scenarios using emulation-based smoke testing. EURASIP J. Wirel. Commun. Netw.
2019, 2019, 172. doi:10.1186/s13638-019-1493-2.

26. Reznik, A. Multi-Access Edge Computing (MEC). Available online: https://www.etsi.org/technologies/
multi-access-edge-computing?jjj=1573496932482 (accessed on 31 May 2020).

27. Reznik, A. Open Source MANO. Available online: https://www.etsi.org/technologies/nfv/open-source-
mano (accessed on 31 May 2020).

28. ETSI. ETSI Multi-Access Edge Computing (MEC): Framework and Reference Architecture. 2019.
Volume 1, pp. 1–21. Available online: https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.
01.01_60/gs_MEC003v020101p.pdf (accessed on 15 June 2020).

29. OpenStack. OpenStack Official Documentation. 2020. Available online: https://www.openstack.org/
(accessed on 15 June 2020).

30. Amazon Web Services. Amazon Web Services (AWS) Official Documentation. 2020. Available online:
https://aws.amazon.com/ (accessed on 15 June 2020).

31. VMWare. VMWare Official Documentation. 2020. Available online: https://www.vmware.com/ (accessed
on 15 June 2020).

32. OpenVIM. OpenVIM Official Documentation. 2020. Available online: https://www.openvim.com/
(accessed on 15 June 2020).

33. Hamid, W.; Shah, M.A. AWS Support in Open Source Mano Monitoring Module. In Proceedings of the
2018 24th International Conference on Automation and Computing (ICAC), Newcastle upon Tyne, UK,
6–7 September 2018; pp. 1–6. doi:10.23919/IConAC.2018.8749021.

34. Humphrey, P. Understanding When to Use RabbitMQ or Apache Kafka. Available online: https://content.
pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka (accessed on 15 June 2020).

35. ZeroMQ. ZeroMQ Official Documentation. 2020. Available online: https://zeromq.org/ (accessed on 16
June 2020).

36. Taleb, T.; Ksentini, A.; Jantti, R. “Anything as a Service” for 5G Mobile Systems. IEEE Netw. 2016, 30, 84–91.
doi:10.1109/MNET.2016.1500244RP.

37. KyoJin Hwang.; DougYoung Suh. Reducing perceptible IPTV zapping delay using CDN cache server. In
Proceedings of the 2013 International Conference on ICT Convergence (ICTC), Jeju, Korea, 14–16 October
2013; pp. 738–739. doi:10.1109/ICTC.2013.6675467.

38. Asrese, A.S.; Eravuchira, S.J.; Bajpai, V.; Sarolahti, P.; Ott, J. Measuring Web Latency and Rendering
Performance: Method, Tools, and Longitudinal Dataset. IEEE Trans. Netw. Serv. Manag. 2019, 16, 535–549.
doi:10.1109/TNSM.2019.2896710.

39. Ju, R.; Wang, W.; Li, J.; Li, F.; Han, L. On Building a Low Latency Network for Future Internet Services.
In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore,
4–8 December 2017; pp. 1–6. doi:10.1109/GLOCOM.2017.8254436.

40. Docker. Docker Official Documentation. 2020. Available online: https://docs.docker.com/ (accessed on
16 June 2020).

41. Open Baton. Open Baton Official Documentation. 2017. Available online: https://openbaton.github.io/
documentation/ (accessed on 16 June 2020).

42. Open Source MANO. Open Source MANO Official Documentation. 2020. Available online:
https://osm.etsi.org/ (accessed on 16 June 2020).

43. IDLab. The Virtual Wall. Available online: http://idlab.technology/infrastructure/virtual-wall/ (accessed
on 15 June 2020).

44. FED4FIRE Federation for Fire Plus. FED4FIRE+ Official Documentation. 2020. Available online:
https://www.fed4fire.eu/ (accessed on 16 June 2020).

45. jFed. jFed Official Documentation. 2019. Available online: https://jfed.ilabt.imec.be/ (accessed on 16 June 2020).
46. Kubernetes. Kubernetes Official Documentation. 2020. Available online: https://kubernetes.io/ (accessed

on 16 June 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1186/s13638-019-1493-2
https://www.etsi.org/technologies/multi-access-edge-computing?jjj=1573496932482
https://www.etsi.org/technologies/multi-access-edge-computing?jjj=1573496932482
https://www.etsi.org/technologies/nfv/open-source-mano
https://www.etsi.org/technologies/nfv/open-source-mano
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://www.openstack.org/
https://aws.amazon.com/
https://www.vmware.com/
https://www.openvim.com/
https://doi.org/10.23919/IConAC.2018.8749021
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://zeromq.org/
https://doi.org/10.1109/MNET.2016.1500244RP
https://doi.org/10.1109/ICTC.2013.6675467
https://doi.org/10.1109/TNSM.2019.2896710
https://doi.org/10.1109/GLOCOM.2017.8254436
https://docs.docker.com/
https://openbaton.github.io/documentation/
https://openbaton.github.io/documentation/
https://osm.etsi.org/
 http://idlab.technology/infrastructure/virtual-wall/
https://www.fed4fire.eu/
https://jfed.ilabt.imec.be/
https://kubernetes.io/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	MEC in Vehicular Context
	Management and Orchestration of Resources and Services within MEC

	The Closed-Loop Life-Cycle Management of Network Services in MEC
	Orchestration and Control
	Orchestration
	Control

	Monitoring

	A Feature Based Analysis of Existing MANO Tools
	A Performance Analysis of Existing MANO Tools
	Experimentation Setup
	Network Service
	Metrics
	Installation and Environment Setup
	The Virtual Wall Testbed

	Results

	Conclusions
	References

