
Lightweight Self-adaptive Cloud-IoT Monitoring
across Fed4FIRE+ Testbeds

Marco Gaglianese, Stefano Forti, Federica Paganelli, Antonio Brogi
Department of Computer Science, University of Pisa, Pisa, Italy

Abstract—Monitoring Fog infrastructure resources in a
lightweight and fault-resilient manner is a challenging research
problem. In this article, we illustrate the experimental assessment
of a distributed, self-organising and fault-tolerant monitoring tool
especially targeting Fog environments. The assessment involved
up to 40 nodes across two testbeds within the Fed4Fire+ feder-
ation. Results show the capability of the tool to handle different
types of failures in the monitored infrastructure, and to quantify
its measurement accuracy and limited footprint.

I. INTRODUCTION

Monitoring Fog resources [1] will be crucial to orchestrate
next-gen services. Indeed, monitoring data are required to
decide where to deploy application services, and when and
where to scale and migrate them in case their Quality of
Service (QoS) and contextual requirements cannot be satis-
fied by the current deployment and infrastructure state [2].
However, monitoring is especially challenging to implement
due to various peculiarities of Cloud-IoT settings, e.g., limited
hardware resources and unstable connectivity at the Edge,
platform heterogeneity, and node or connection failures. There-
fore, experimenting Cloud-IoT monitoring solutions in real
systems or testbeds is essential for their validation.

In this context, the Lightweight Self-adaptive Cloud-IoT
Monitoring across Fed4FIRE+ Testbeds (LiSCIo) experiment1

aimed at evaluating over a distributed testbed environment the
operation of a monitoring service, called FogMon, targeting
heterogeneous Cloud-IoT environments. Such an experiment
run over a distributed testbed within the Fed4Fire+ federation.

FogMon monitors hardware resources at Cloud-IoT com-
puting nodes and end-to-end network QoS between such
nodes [3]. FogMon features a self-organising peer-to-peer
overlay topology with self-restructuring mechanisms and dif-
ferential monitoring updates to ensure fault-tolerance and
scalability. While various tools are available for monitoring
Cloud infrastructure resources, only a few prototypes have
been proposed for monitoring node resources (like [4]) or
node resources and end-to-end latencies (like [5]) in Fog
environments. As thoroughly discussed in [3], FogMon is the
first monitoring tool capable of measuring and aggregating in
a scalable, robust, and non-intrusive manner information on
hardware resources, end-to-end network QoS parameters, and
available IoT devices in Fog environments.

Work partly supported by experiment Lightweight Self-adaptive Cloud-IoT
Monitoring across Fed4FIRE+ Testbeds (F4Fp-08-M30) funded by Fed4Fire+
(Horizon 2020, G.A. 732638). Experiments run from November 2020 to April
2021. More information at https://www.fed4fire.eu/demo-stories/oc8/liscio/

1Fed4Fire+, https://www.fed4fire.eu

The objective of LiSCIo was to test, assess and tune FogMon
over a distributed infrastructure of Cloud and Edge nodes
built by leveraging the VirtualWall and CityLab testbeds of
Fed4Fire+. The experiment setup consisted of a Docker-
based deployment of FogMon over a set of heterogeneous
nodes, i.e., 10 CityLab wireless nodes and 10-30 VirtualWall
servers. Ultimately, LiSCIo led to implementing, assessing and
releasing a new version of FogMon, called FogMon2, which
improves (i) the relative error on the latency and bandwidth
values measured with respect to a setup ground truth, and (ii)
the time to stability, i.e., the time needed to reach a stable
overlay organisation after initialisation or after node failures
or link QoS degradations. Overall, FogMon2 upgrades the
technology readiness level (TRL) of our prototype from TRL4
(validation in a laboratory environment, 13 nodes) to TRL5
(validation in a relevant environment, 40 nodes).

In this article, we focus on FogMon2, illustrating its exper-
imental assessment over the federated testbeds of Fed4Fire+.
Due to space limits, we do not describe here the prelimi-
nary experiment activities conducted on the previous version
(FogMon), which allowed us to fix some issues and release
FogMon2. We run and discuss two main types of tests: (i)
node failures and (ii) link failures, at different severity levels.
We analyse the capability of FogMon2 to self-restructure so to
cope with such failures/degradations. We also consider two
different configurations of FogMon2 – a default and a reactive
one – to evaluate the overhead due to improving FogMon2’s
reactiveness to failures. To this end, in all tests, we collect the
footprint of FogMon2 on CPU, RAM, and bandwidth.

The rest of this article is organised as follows. Sect.II
presents FogMon2, Sect.III and IV describe setup and results of
the LiSCIo experiment, and Sect.V draws some conclusions.

II. FOG INFRASTRUCTURE MONITORING WITH FOGMON2

FogMon2 is a C++ open-source2 software prototype imple-
mented and released throughout the LiSCIo experiment. It
provides distributed monitoring features targeting Fog com-
puting environments, consolidating and improving the original
FogMon methodology and prototype [3], [6]. FogMon2 mon-
itors hardware resources (viz., CPU, memory, hard disk) at
different Fog nodes and end-to-end network QoS (viz. latency,
bandwidth) between such nodes. FogMon2 nodes organise
themselves into a peer-to-peer overlay network that features
two types of software agents: Followers and Leaders.

2https://github.com/di-unipi-socc/FogMon/tree/liscio-2.0



Follower nodes probe all monitored metrics and are divided
into groups, each group being associated with a Leader node.
They can leave and join the network at any moment in time,
due to their own decision as well as to node or network fail-
ures. Leader nodes, besides monitoring data about their own
deployment node and other Leaders, periodically aggregate
data gathered from their Follower nodes. Leaders self-organise
into an overlay peer to-peer network and share data aggregated
from their Followers through gossiping.

The topology of the FogMon2 monitoring overlay is con-
structed upon a proximity criterion based on latency measure-
ments among nodes. We assume that any new node joining the
FogMon2 environment initially acts as a Follower, which only
knows the address of one (or some) Leader node(s), deployed
at a known location. Such a node acts as a registry of all
Leader identifiers (viz., IP addresses and ports).

Any new Follower retrieves from the known Leader a list of
those identifiers. Subsequently, it measures the latency (i.e., the
round-trip time) against each of them and it associates with the
group of the closest Leader. The Follower periodically checks
the network status and it may change Leader when it cannot
reach the associated Leader anymore due to network or node
failures, or when it identifies a closer candidate Leader (e.g.,
due to network congestion, or newly available Leaders).

To tame the quadratic time complexity of measuring end-
to-end QoS in a network of N nodes, the number of clus-
ters (i.e., Leaders) is set to

√
N by default. After joining

the network, Follower nodes can start their normal probing
operation of hardware resources and intra-group end-to-end
QoS, periodically reporting monitored data to their Leader.
To reduce communication overhead, Followers only send data
whose average or variance differ more than a given threshold
(i.e., 10% by default) from the last performed update.

While network QoS is actually measured within each group
and between Leaders, latency and bandwidth between nodes in
distinct groups are estimated by Leaders relying on gossiped
data. More specifically, latency ℓA,B between two Followers
A and B referring to distinct Leaders L1 and L2 respectively,
is computed as: ℓA,B = ℓA,L1 + ℓL1,L2 + ℓL2,B . This approx-
imation is acceptable as long as the latency between Leaders
is greater than the latency between each Follower node and
its Leader. The assumption is reasonable as per the proximity
criterion used to build up and maintain the FogMon2 network.

Analogously, the available bandwidth βA,B from node A to
node B is approximated as the minimum between the maxi-
mum outgoing bandwidth of A and the maximum incoming
bandwidth of B and the bandwidth between their Leaders L1
and L2: βA,B = min(maxk βA,k,maxh βh,B , βL1,L2).

FogMon2 can handle (i) network disconnections and node
crashes at Followers by removing unreachable nodes from
Leader databases when they disconnect for a prolonged time,
and (ii) Leader failures by allowing Followers to join the group
of a new (different) Leader and start again their monitoring
activity. Data replication through gossiping at all Leaders
guarantees monitoring data availability.

Besides, FogMon2 topology self-restructures to cope with

dynamic variations in the Fog infrastructure by exploiting a
distributed execution of a k-medoids clustering algorithm [7]
at each Leader, combined with a consensus protocol to decide
on the best restructuring. A full topology restructuring mech-
anism is triggered when one of the following events occurs:
(a) the network size doubles/halves from the last restructuring,
or when (b) clustering quality measured at Leaders exceeds
a threshold value. A topology restructuring is also triggered
when the number of Leaders considerably differs from

√
N .

FogMon2’s behaviour is highly configurable to allow fine-
tuning the balance between being lightweight on infrastructure
resources and quickly detecting changes in the monitored met-
rics. We consider two possible configurations. The default con-
figuration favours a non-intrusive behaviour of the prototype
(e.g., Follower reporting period is 30 s and bandwidth probing
period is 10 minutes), while the reactive configuration favours
monitoring promptness (e.g., Follower reporting period is 15
s and bandwidth probing period is 2 minutes).

In comparison with FogMon, FogMon2 improves some im-
plementation details: i) latency and bandwidth measurements
from a Follower to the others in the same group are performed
in parallel by different threads (instead of being performed
sequentially) to speed-up the overall time to complete all
measurements; ii) in order to reduce the time required to detect
and react to network QoS degradations, FogMon2 empties
the latency (bandwidth) measurement windows in case the
degradation exceeds a certain set threshold (500% for latency,
30% for bandwidth) with respect to the current average value;
iii) passive and active bandwidth measurements performed
with Assolo and iperf, respectively, are better tuned.

III. EXPERIMENT SETUP

a) Testbeds: LiSCIo run over two testbeds within the
Fed4Fire+ federation, viz. VirtualWall (https://www.fed4fire.
eu/testbeds/virtual-wall) and CityLab (https://www.fed4fire.
eu/testbeds/citylab), both managed by imec. The VirtualWall
testbed (Ghent, Belgium) provides more than 550 servers can
be used as bare metal hardware or virtualized through XEN or
docker. VirtualWall supports multiple operating systems and
software-enabled network impairment capabilities (e.g., delay,
packet loss, bandwidth limitation). All nodes have a public
IPv6 address. The CityLab testbed (Antwerp, Belgium) is
designed for large-scale wireless networking experimentation
in smart cities. The testbed is deployed around the city and the
university campus, in 50 locations, and it represents a realistic
wireless environment for edge computing. Nodes connect to
the Internet through a gateway relying over a fibre network.

b) Experiment setup and tooling: We set-up an experi-
mental environment that reproduces a distributed infrastructure
of Cloud and Edge nodes. We jointly relied upon (T1) the
CityLab testbed to be used for its Edge computing gateways,
running FogMon2 from 10 to 20 locations, and (T2) the
Virtualwall testbed to be used for its bare-metal servers. In
VirtualWall we reserved 10+ physical nodes. In CityLab we
reserved 10+ wireless nodes. All nodes run an Ubuntu 18.04
LTS distribution on top of which we installed Docker 20.10.5



to run FogMon2. We defined two infrastructure sizes based on
the number of exploited nodes, viz. a Small infrastructure with
20 nodes (10 on VirtualWall and 10 on Citylab), and a Large
infrastructure (30 on VirtualWall and 10 on Citylab).

On each node, FogMon2 is deployed and runs in a container
by relying on the configuration and management settings
which can be downloaded and extended from JFed3. Based
on these settings and by exploiting Fabric, we implemented
suitable helper methods to install Docker, to setup end-to-
end network links by means of GRE tunnels and tc, to
pull/start/stop FogMon2, to deploy a monitoring tool for band-
width usage (i.e., bmon). Our LiSCIo Topology Builder tool:

1) creates a large tree, mimicking the hierarchical structure
of the Internet with nodes closer to the root representing
data centres and ISP nodes, and leaf nodes representing
access points and edge devices,

2) within the graph generated at (1), it selects the number
of nodes specified for the current experiment and prunes
the others,

3) computes the end-to-end latency among the selected
nodes by summing up latencies along paths, and it com-
putes bandwidths among the selected nodes by taking
the minimum bandwidth along paths,

4) computes the Davies-Bouldin index [8] for the selected
graph to assess the overlay quality of the graph before
running FogMon2 over it, and

5) based on the results of step (4), it generates an
rspec.xml file that can be input to JFed, containing
all node details.

The Topology Builder graphically outputs the results of
the steps 1–5 as shown in Fig.1, where red nodes represent
supporting routers, and other colours a possible clustering of
20 nodes in a candidate Small testbed. The link configuration
(specified with latency and bandwidth values computed as
described at point 3) is output by the Topology Builder and it
is used as:

• input to the aforementioned Fabric helper methods to set
up end-to-end links between nodes in the testbed, and

• ground truth4 to compute FogMon2 relative errors on
bandwidth and latency measurements and estimates.

An open-source5 service, FogMonEye, is deployed to an ex-
ternal node to collect and visualise live experiment results
as shown in Fig. 2. Such a service collects periodic reports
from Leader nodes and analyses and compare them against the

3JFed is an open-source Java-based application that represents a single
point of contact and service for Fed4Fire+ testbeds. It enables a fine-grained
configuration and management of experimental resources across different
testbeds through the usage of standard tooling, i.e., Ansible, Fabric, and a
file specification of experiment requirements, i.e., rspec.xml.

4As Fed4Fire+ testbeds enable setting up the latency and bandwidth
featured by each monitored end-to-end link according to the values defined
by the Topology Builder, we decided not to rely on any external monitoring
tool to constitute our ground truth. Indeed, relying on external tools provided
by the testbeds (e.g., Zabbix) could have introduced further relative errors to
consider and handle in our experiments. Besides, using those tools could have
increased the bandwidth overhead measured by bmon.

5https://github.com/di-unipi-socc/FogMon/tree/liscio-2.0/FogMonEye

Fig. 1: Topology Builder: example output.

Fig. 2: FogMonEye WebGUI.

ground truth provided by the Topology Builder so to compute
and visualise:

(a) the relative error of FogMon2 on the measured intra-
group latency and bandwidth and the relative error
on the estimated inter-group latency and bandwidth,
computed as the relative error between the ground
truth (i.e., the testbed configurations) and the values
collected/computed by FogMon2,

(b) the footprint of FogMon2 on CPU, RAM (measured via
docker stats) and bandwidth (measured via bmon), and

(c) the time that FogMon2 employs to reach stability6 after
infrastructure changes that trigger a topology restructur-
ing (e.g., crash of a node, changes in link QoS).

FogMonEye permits to concurrently monitor multiple experi-
ment sessions with FogMon2 and allows to store the results
of completed experiments. The given metrics will be used in
Sect. IV to discuss the experiment results.

c) Experiment types: Experiments with FogMon2 are
divided into two categories:

6We consider that a running instance of FogMon2 is stable when (i) the
FogMon2 overlay organisation into Leaders and Followers does not change
for 40 consecutive Leader-Leader communication periods and (ii) all direct
measurements of links and hardware have been performed at least once in
each group and show an error on direct measurements ≤ 25%.



(NF) node failures experiments (NF1, NF2 and NF3), testing
and assessing the two configurations of FogMon2 against
three types of Leader and Follower failures, and

(LF) link failures experiments (LF1 and LF2), testing and as-
sessing the two configurations of FogMon2 against three
types of Leader and Follower network degradations.

Node failure experiments target the capability of FogMon2
to self-organise in presence of failures of varying numbers of
Leader and Follower nodes, at increasing sizes of the available
infrastructure. They consider causing the failure of a number
of randomly selected nodes: 50% Leaders and 25% Followers
(NF1), all but one Leader and 50% Followers (NF2), and all
but one Leader and no Follower (NF3).

On the other hand, link failure experiments target the capa-
bility of FogMon2 of adapting to variations in communication
links status in terms of available bandwidth and latency. They
inject a substantial performance degradation in 5% of the links
of the original tree topology built by the Infrastructure Builder
(LF1) and in 10% of the links of the original tree topology
built by the Infrastructure Builder (LF2). Also in this case the
links are randomly selected.

Experiments NF1–NF3 and LF1–LF2 are repeated for the
Small and Large testbed configurations, and for the default
and reactive configurations of FogMon2. Experiments last 30
minutes each and results are averaged across two runs. All
collected data is publicly available in [9].

IV. EXPERIMENT RESULTS

In this section, we illustrate the results of the experiments7

illustrated in Sect. III by comparing the performance of the
reactive and default configurations of FogMon2 with respect
to time to stability (Sect. IV-A), footprint (Sect. IV-B) and
relative errors on measurements and estimates (Sect. IV-C).
We, finally, briefly contrast the performances of FogMon2 in
the default and reactive configuration (Sect. IV-D).

A. Time to stability

Fig. 3 shows the average time to reach stability across exper-
iments NF1–NF3 (denoted by circles), and LF1–LF2 (denoted
by triangles), in the default and reactive configurations, for
both the Small and Large infrastructure sizes.

Throughout all our experiments, FogMon2 was capable of
self-organising in less than 14 minutes, settling on average
below 10 minutes. In experiments NF1–NF3, the default
configuration achieved the highest time to re-organise, almost
independently from the infrastructure size. For what concerns
the reactive configuration, the time to reach stability for the
same experiments NF1–NF3 increased as the infrastructure
size increased, going from 7 and 10 minutes. Such an increase
was naturally due to higher gossiping time across Leaders in
larger settings, and to the fact that larger testbeds might incur
in longer topology restructurings after node failures.

7Experimental data in tabular form, including a Medium scale testbed
(30 nodes), can be found at https://github.com/di-unipi-socc/FogMon/blob/
liscio-2.0/docs/CNERT2022.pdf.

Fig. 3: Time to stability.

Similar considerations hold for LF1–LF2 experiments,
where time to stability increased with the infrastructure size.
On one hand, the default configuration needed between 5
and 10 minutes to reach stability. On the other hand, the
reactive configuration settled between 6 and 8 minutes. Both
configurations showed a similar lower bound (viz. 5 and 6
minutes) due to shorter restructurings in the Small testbed.

Overall, across both NF1–NF3 and LF1–LF2, the reactive
configuration is generally faster to reach stability (with the
exception of LF for 20 nodes), showing a time saving of
approximately 20% for the Large infrastructure and 45% for
the Small infrastructure.

B. Footprint

Here we discuss the resource usage of FogMon2 throughout
all experiments. We focus here on CPU and bandwidth usage
as they have shown significant variations during the exper-
iments. On the contrary, RAM usage settled below 32MB,
making FogMon2 suitable also for resource-constrained nodes
(e.g., with 256MB of RAM).

Fig. 4 shows the average resource usage of FogMon2
across experiments NF1–NF3 and LF1–LF2, in the default and
reactive configurations, for both the Small and Large testbeds.

Particularly, Fig. 4a shows the percentage usage due to
FogMon2 of one CPU core, and Fig. 4b shows the mean
bandwidth usage8 due to FogMon2 gossiping and bandwidth
measurements. Across all experiments, FogMon2 CPU usage
required less than 5% of a single CPU core. For both ex-
periment types, node failure and link failure, the CPU usage
increased with the size of the infrastructure. Conversely, the
reactive configuration showed a slightly higher CPU usage
(i.e., +2.5% approximately) than the default one.

For what concerns bandwidth consumption, FogMon2 re-
quired less than 2 Mbps (i.e., 250 KBps) for both upload
and download over links that featured an average of 30 Mbps

8For the sake of conciseness, as the results for the upload and download
bandwidth were almost identical, we only illustrate here the results obtained
for the upload bandwidth.



(a) CPU usage (1 core) (b) Bandwidth usage

Fig. 4: Resource footprint of FogMon2.

(a) Intra-group latency (b) Inter-group latency

Fig. 5: Relative errors of FogMon2 on latency (aggregated for NF and LF experiments).

(a) Intra-group bandwidth (b) Inter-group bandwidth

Fig. 6: Relative errors of FogMon2 on bandwidth (aggregated for NF and LF experiments).



bandwidth. The increase in the infrastructure size translated in
an increase of the bandwidth usage in most cases (i.e., NF1–
NF3, and reactive LF1–LF2 in Fig. 4b). Overall, the reactive
configuration required on average 0.8Mbps (100KBps) more
in comparison with the default configuration.

C. Relative errors

In the following, we briefly discuss the relative error on both
actual measurements and estimates performed by FogMon2
on latency and bandwidth, as illustrated in Fig. 5 and 6,
respectively. In all figures, we use box-plots to represent the
relative error across all experiments (NF1–NF3 and LF1–LF2)
for the default and reactive configurations. Boxes indicate the
maximum and minimum values (upper and lower whisks, re-
spectively), and the 25th, 50th and 75th percentiles (indicated
by the box). A white circle denotes the average value.

a) Latency: Fig. 5 shows that, across our experiments,
the errors on latency were less than 26%. Independently
from the infrastructure size, intra-group direct measurements
(Fig. 5a) showed an average relative error between 2.4% and
7.8%, and inter-group estimates (Fig. 5b) between 9.2% and
17.2%. The reactive configuration achieved worse results in
comparison with the default configuration. This is explained
by the higher bandwidth usage of the reactive configuration
(see also Sect. IV-B) that affects latency measurements. In
turn, being based on those measurements, estimates showed a
higher relative error in the reactive configuration.

b) Bandwidth: Fig. 6 shows that, across our experiments,
the errors on bandwidth were always less than 24%. Intra-
group direct measurements (Fig. 6a) showed an average rela-
tive error between 6.4% and 8.8%, and inter-group estimates
(Fig. 6b) between 4% and 19%. The reactive configuration
showed higher variability in the relative error on bandwidth
measurements, compared with the default configuration. This
is due to the higher bandwidth probing frequency that possibly
led to interference in the coordination of bandwidth measure-
ments from different nodes. Intra-group measurements (Fig.
6a) showed worse results in the Large testbed, due to the
higher number of monitored end-to-end links w.r.t. the Small
testbed (i.e., 1600 vs. 400).

D. Default versus Reactive

To sum up, both the default and reactive configurations
of FogMon2 were capable of handling correctly the infras-
tructure variations triggered by our experiments, maintaining
a correct functioning through suitable overlay restructurings.
As expected, direct intra-group measurements feature lower
relative errors with respect to inter-group estimates, in both
configurations.

In comparison with the default configuration, the reactive
configuration typically ensures faster time to stability, i.e.,
faster identification of changes in the monitored infrastructure
(e.g., node crash, link QoS degradation). This aspect can be
important when monitored data need to be used to decide on
the management of quasi-realtime or mission-critical applica-
tion services. Naturally, such an improvement in FogMon2’s

reactiveness comes at the cost of a (slightly) higher resource
usage and to an increase in the relative error on measurements
and estimates that mainly derives from network congestion due
to more frequent measurements.

V. CONCLUDING REMARKS

In this article, we described and assessed an improved new
version of our lightweight decentralised monitoring tool for
Fog computing infrastructures, FogMon2.

In our experiments, FogMon2 was capable of maintaining
its correct functioning via topology restructurings. It shows a
contained footprint. RAM usage is always bound by 30MB,
which makes it usable on resource-constrained edge devices
(e.g., with 512MB of RAM), and CPU usage is bound by
5% at worst. Similarly, for bandwidth usage, the default
configuration settles around 70 KBps, while the reactive one
around 170 KBps. This confirms FogMon2 is lightweight and
avoids overloading situations due to monitoring. Such perfor-
mance suggests that FogMon2 is suitable for monitoring Fog
resources, featuring a good compromise between intrusiveness
and measurements accuracy.

The experiments carried out in LiSCIo brought FogMon
from TRL4 to TRL5. Last, but not least, FogMon2 has been
extended with suitable tooling and a GUI, FogMonEye, which
will allow us to assess new future releases of our tool,
e.g., across different opportunistic-like network topologies.

Finally, we intend to integrate FogMon2 with our continuous
reasoning methodologies for application management [10] and
with an existing orchestration platform, so to prototype an
autonomic QoS-aware tool for managing next-gen multiservice
applications on top of a Fog infrastructure.

REFERENCES

[1] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, “Mon-
itoring self-adaptive applications within edge computing frameworks: A
state-of-the-art review,” J. Syst. Softw., vol. 136, pp. 19–38, 2018.

[2] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Comput. Surv.,
vol. 53, no. 3, pp. 1–35, 2020.

[3] S. Forti, M. Gaglianese, and A. Brogi, “Lightweight self-organising
distributed monitoring of Fog infrastructures,” Future Gener. Comput.
Syst., vol. 114, pp. 605–618, 2021.

[4] Á. Brandón, M. S. Pérez, J. Montes, and A. Sanchez, “Fmone: A flexible
monitoring solution at the edge,” Wireless Communications and Mobile
Computing, 2018.

[5] A. Souza, N. Cacho, A. Noor, P. P. Jayaraman, A. Romanovsky, and
R. Ranjan, “Osmotic monitoring of microservices between the edge and
cloud,” in HPCC/SmartCity/DSS 2018, 2018, pp. 758–765.

[6] A. Brogi, S. Forti, and M. Gaglianese, “Measuring the fog, gently,” in
International Conference on Service-Oriented Computing, (ICSOC), ser.
LNCS, vol. 11895. Springer, 2019, pp. 523–538.

[7] E. Schubert and P. J. Rousseeuw, “Faster k-medoids clustering: Improv-
ing the pam, clara, and CLARANS algorithms,” in SISAP, 2019.

[8] M. U. and B. S., “Performance evaluation of some clustering algorithms
and validity indices,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 24, no. 12, p. 1650 – 1654, 2002.

[9] M. Gaglianese, S. Forti, F. Buti, F. Paganelli, and A. Brogi, “Lightweight
Self-adaptive Cloud-IoT Monitoring across Fed4FIRE+ Testbeds (LiS-
CIo) – Dataset,” http://doi.org/10.5281/zenodo.4682986, 2021.

[10] S. Forti, G. Bisicchia, and A. Brogi, “Declarative Continuous Reasoning
in the Cloud-IoT Continuum,” Journal of Logic and Computation, 2022.


