
Experimenting latency-aware and reliable service
chaining in Next Generation Internet testbed facility

M. Gharbaoui∗, C. Contoli‡, G. Davoli‡, G. Cuffaro∗, B. Martini∗,
F. Paganelli∗, W. Cerroni‡, P. Cappanera †, P. Castoldi§

∗CNIT, Italy ; †University of Florence, Italy
‡DEI - University of Bologna, Italy ; §Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—In this paper we report experimental validation of
an orchestration system for geographically distributed Edge/NFV
clouds, supporting end-to-end latency-aware and reliable network
service chaining. The orchestration system includes advanced
features such as dynamic virtual function selection and intent-
based traffic steering control across heterogeneous SDN in-
frastructures. The experiment run under the 1st Open Call
of the Fed4FIRE+ EU H2020 Project and took advantage of
bare metal servers provided by the Fed4FIRE platform to set
up a distributed SDN/NFV deployment. We provide details on
how this orchestration system has been deployed on top of
Fed4FIRE facility and present experimental results assessing the
effectiveness of the proposed orchestration approach.

Index Terms—SDN; NFV; orchestration; federated testbed;
service chaining.

I. INTRODUCTION

With the advent of Software-Defined Networking (SDN),
Network Function Virtualization (NFV) and the comprehen-
sive 5G context [1], novel service scenarios can be conceived
(e.g., cloud robotics, smart cities) by dynamically composing
(i.e., chaining) application and network services (e.g., robot
balancers, traffic accelerators) deployed as virtual functions
(VFs) in distributed micro-clouds located at the network Edge.
However, the heterogeneity of the infrastructures, the high dy-
namicity of services and the geographical distribution of VFs
pose new challenges in terms of resource control/management
capabilities, adaptive usage of multi-technology resources, and
fulfillment of end-to-end latency requirements considering the
impact of both processing and network delays [2][3].

In this work we present a latency-aware and reliable end-to-
end service chaining mechanism based on multi-domain/multi-
technology resource orchestration over geographically dis-
tributed Edge clouds interconnected through SDN. More
specifically, the service chaining orchestration system exploits
heterogeneous and enhanced resource control/management
capabilities offered by cloud and SDN network domains to
dynamically provide service chains while (i) optimally select-
ing VFs over the path that minimizes the offered end-to-end
latency across cloud and network domains, and (ii) promptly
adapting established service chain paths to the current network
load. Optimal VF selection and dynamic path adaptation is
triggered by real-time monitoring data collected from the
underlying cloud and network infrastructures.

The proposed approach advances the state of the art since
it considers both cloud processing delays and network delays

while addressing latency requirements [4][5], it handles or-
dered sequences of VFs [6], and it also provides a service
chain path orchestration feature at inter-DC level [7]. In ad-
dition, the presented mechanism goes beyond the coordinated
establishment of cloud and network services, including also
adaptation actions with respect to current network resource
availability. In terms of experimentation, this work advances
the state of the art [8][9][10] since it performs experiments in
service chaining using a testbed which realistically reproduces
a composite and distributed SDN/NFV deployment, including
inter-DC capabilities without emulated data plane functions.

The main contribution of this work is the validation and
the experimental evaluation of the proposed end-to-end service
chaining orchestration system on testbed facilities reproducing
a composite and distributed SDN/NFV deployment. Indeed,
the experiments were performed on top of the Fed4FIRE
infrastructure provided within the Fed4FIRE+ Horizon 2020
Project, which offers a federation of open, accessible and high-
available Next Generation Internet (NGI) testbeds to support
a wide variety of different research and innovation activities,
including 5G-related experiments [11]. Taking advantage of
bare metal services provided by the Fed4FIRE platform, we
could benefit of exclusive use of physical servers and deploy
and assess, in a realistic environment, a distributed SDN-
and NFV-based systems with related resource control and
orchestration functionality. We integrated the single elements
of the end-to-end service chaining orchestration system that
were previously presented separately and evaluated through
simulations or small-scale laboratory testbeds [12][13][14].

II. ORCHESTRATION SYSTEM DEPLOYMENT

Figure 1 describes the architecture of our service chain-
ing orchestration system and its deployment on top of the
Fed4FIRE+ experimentation platform. According to the ETSI
NFV MANagement and Orchestration (MANO) framework
[15] the orchestration system is devised to run on top of an
NFV Infrastructure (NFVI), which in our case was composed
of three experiment slices that implemented Edge cloud SDN-
based Data Center (DC) domains (named DC-1, DC-2 and
DC-3), and a slice that implemented a Wide Area Network
(WAN) SDN infrastructure domain providing inter-DC con-
nectivity. An additional slice was dedicated to the Chain
Optimizer. In line with [8], the proposed orchestration system
is assumed to supplement NFV Orchestrator (NFVO) and VNF

DP slice interconnection
(VXLAN tunnel)

Orchestration msg
(via MP network)

VIM 1 VIM 2VIM 3

Edge Cloud
SDN Domain

(DC-1)

Chain Optimizer

WIM

NFVO/
VNFM

WAN SDN

Edge Cloud
SDN Domain

(DC-3)

Edge Cloud
SDN Domain

(DC-2)

ETSI NFV MANO

Fe
d4

FI
R

E+

Service Chaining Orchestration System

Fig. 1. Orchestration system deployment on the Fed4FIRE platform. Multiple experiment slices are interconnected at both data plane (blue/solid lines) and
orchestration plane (red/dashed lines) levels.

Manager (VNFM) functionalities currently envisioned in [15]
with dynamic service chaining capabilities.

The Chain Optimizer is a service chaining engine running
an optimization algorithm that, upon a service chain request,
selects VF instances available from different DCs to minimize
an estimated end-to-end latency calculated considering both
VF processing delays and inter-DC network delays informa-
tion. The algorithm has been discussed in a previous work
[12], where the optimization problem has been formulated as
a Resource Constrained Shortest Path problem on an auxiliary
layered graph accordingly defined. The algorithm uses up-to-
date topological and latency information, retrieved by periodi-
cally interacting with NFVI and VF monitoring APIs to collect
measurements about inter-DC latency, types and instances of
VF deployed at each DCs and related processing latency.
In this implementation, processing latency measurements are
posted by VF instances onto the “Gnocchi” Time Series
Database service provided by OpenStack on each DC slice and
exposed through Gnocchi REST APIs. According to the solu-
tions provided by the optimization algorithm, this component
interacts with underlying WAN/DC domain resource orches-
trators in order to enforce traffic steering operations to set-up
service chain paths and, in general, to manage the lifecycle
of a service chain (i.e. creation, updating and deletion). The
chain optimizer leverages intent-based REST APIs exposed
by underlying domain orchestrators to send such instructions
using an application-oriented semantic rather than dealing
with technology-specific low-level network details. The Chain
Optimizer has been implemented as a Java application and it
offers a REST API for CRUD (Create, Read, Update, Delete)
operations on service chains.

The SDN WAN slice includes the following components.
The SDN network topology consists of five physical nodes
running the Open vSwitch (OvS) software, controlled by an
instance of the Open Network Operating System (ONOS) con-
troller, hosted on a dedicated node. The WAN Infrastructure
Manager (WIM) Orchestrator implements the orchestration

logic for the WAN SDN domain slice on top of the ONOS
controller, exposing the programmable provision of service
chain paths across the WAN by means of an intent-based
northbound REST interface. Hence, the set-up of service chain
paths in the WAN to connect VFs in different DCs can be
triggered by the Chain Optimizer by specifying to the WIM
orchestrator the list of DCs to be traversed. Then, the WIM
orchestrator derives the DC domain gateways to be connected
and performs mapping operations by identifying the network
path and, accordingly, enforces the forwarding rules to the
switches along the identified path. In line with [16], the WIM
orchestrator also offers reliable service chains by adapting (i.e.,
redirecting) service paths, or a segment thereof, to recover
from network congestions events detected by periodically
collecting statistics from the SDN controller and deriving up-
to-date switch link throughput data. Finally, the WIM is also
responsible for the collection of network latency information
(i.e., inter-DC delays) that are made available to the Chain
Optimizer for computing a minimum-latency service graph.
Details on WIM Orchestrator can be found in [13][17].

The three SDN DC slices host small Edge cloud deploy-
ments based on OpenStack. Each DC slice includes two or
three compute nodes, where virtual machine instances are de-
ployed over a QEMU-KVM hypervisor. All OpenStack nodes
are connected to another physical node running an instance of
OvS, representing the data plane SDN infrastructure of the DC,
which is controlled by an instance of ONOS running locally.
The same physical node hosts also the Virtual Infrastructure
Manager (VIM) Orchestrator, which implements an SDN-
enabled DC/cloud domain orchestration logic providing ad-
vanced network management capabilities in cloud computing
environments. The VIM orchestrator exposes an intent-based
northbound REST interface that allows to specify a service
chain by means of a high-level descriptive syntax, agnostic
to the specific SDN technology adopted [14]. This makes it
suitable to manage different DC domains in a multi-technology
environment, e.g., leveraging different SDN controllers. The

VIM orchestrator is also capable of dynamically applying
changes to an existing service chain without having to delete
and re-deploy it from scratch. This allows to dynamically
adapt service chains to the current context of users or services
(e.g., location of users in a mobility scenario) or to varying
needs of the service provider (e.g., resource management
policy), and, ultimately, to avoid or prevent SLA violations.
Furthermore, the REST API provided by the VIM orchestrator
allows the Chain Optimizer to collect information about the
currently deployed VFs and their estimated processing latency,
computed based on the current workload. The details of the
VIM orchestrator can be found in [18][14].

The established DC slices and the WAN slice interact at the
data plane level by exchanging packet data traffic by means
of VXLAN tunnels, and at the orchestration plane level by
exchanging control messages between Chain Optimizer, WIM
and VIM orchestrators. Interactions at the network control
plane level do not take place between different slices. This
is in line with the envisioned architecture, where each domain
is supposed to adopt its own SDN control plane solution
independently of the choice made by other domains.

III. EXPERIMENTAL RESULTS

In this section we present experimental results to validate
the correct operations of our orchestration system, as well as
some performance evaluation of the software components. We
generated create and delete service chain requests to the Chain
Optimizer, with different lengths and requirements in terms
of bandwidth and maximum latency. The Chain Optimizer
handles each request, computes a latency-optimized solution
and sends the corresponding forwarding instructions to the
relevant VIM and WIM orchestrators through their respective
northbound interfaces. Then, each VIM/WIM interacts with
the SDN controller in its domain in order to setup the relevant
flow entries. After the switches have been configured and the
chain is correctly established, we inject data traffic across the
VF instances implementing the chain (e.g., by generating iperf
flows with a bit rate equal to 1 Mbit/s).

Figure 2 shows the sequential time diagram of the through-
put measured at the VF instances involved in the deployment
of the following service chain sequence: i) VF-1 → VF-
7 → VF-9, ii) VF-1 → VF-9, iii) VF-1. At time t = 0 the three
chains have already been successfully deployed. According to
the initial placement, instances of VF-1 and VF-7 are deployed
in DC-1, whereas instances of VF-9 are deployed in DC-2.
We can observe that at t = 9s traffic starts flowing through
instances involved in the first chain, i.e., VF-1, VF-7 and VF-9
(throughput equal to 1 Mbit/s). When traffic is sent through
the second chain, at t = 40s a second flow is measured at VF-
1 and VF-9 instances (throughput equal to 2 Mbit/s). Finally,
when the third chain is loaded with traffic, throughput equal
to 3 Mbit/s is measured at VF-1 instance at t = 70s. At the
end of the experiment (t = 100s), the measured throughput
drops to zero due to the deletion of the three service chains.
This demonstrates the correct deployment and deletion of the
service chains across the involved domains.

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120

T
h
ro

u
g

h
p

u
t

(M
b

it
/s

)

Time (s)

VF-1
VF-9
VF-7

Fig. 2. Sequential time diagram of the throughput measured at VF instances
involved in a service chain deployment sequence.

Then, we considered 4 different sets of 10 requests with
service chains having the same length (from 2 to 5), sent to
the Chain Optimizer with an inter-arrival time equal to 60s.
We computed the overall response time, which is the time
interval, measured at the Chain Optimizer side, between the
reception of a request and the delivery of a response to the
client. In case of successful request, this interval includes also
the time needed for sending the forwarding instructions to
VIM and WIM orchestrators and receiving their reply. Table I
reports the measured values as a function of the service chains
length. As expected, the overall time increases when the chain
length increases since the WIM and VIM orchestrators require
more time for the chains installation. Moreover, we measured
the CO computation time as the time needed by the VNF
Selection algorithm for solving the optimization problem. It
remains almost stable (around 2-3ms) due to the system scale
that in an experimental set-up remains small anyway.

Table I also reports the average response times of the WIM
and VIM orchestrators, corresponding to the interval between
the reception of a request from the Chain Optimizer and the
delivery of a response. In the WIM case, it includes the search
for an available path and the setup of the flow entries in the
OpenFlow switches, which explains the relative high values
(around 40s). Measured values are lower in the VIM case
(around 1.5s), because they include only the response times
of the REST interfaces of the underlying SDN controllers,
without verifying the actual setup of the flow entries in the
data plane. The reason for this choice is to measure the VIM
response time independently of the SDN controllers used in the
DC domains, which can operate their southbound interfaces in
different ways.

TABLE I
PERFORMANCE OF THE ORCHESTRATION SYSTEM COMPONENTS.

Chain Length CO Overall
Resp. Time [s]

Resp. Time
WIM [s]

Resp. Time
VIMs [s]

2 64.34 40.84 1.41

3 69.34 36.29 1.50

4 74.96 35.98 1.48

5 82.75 40.5 1.52

The adaptation feature offered by the orchestration system
with respect to the network status in the SDN WAN has
also been tested. Indeed, the WIM orchestrator adapts the
network paths across the WAN underpinning the VF chain path
segments with respect to the load of switches/links derived
from a selective set of monitoring data (e.g., data throughput).
If one or more switches become overloaded (the threshold is
fixed to 1 Gbit/s), it triggers the redirection of service chain
data flows through other available switches thereby preventing
or recovering from service degradations due to switch conges-
tions. Thus, we measured the redirection time, i.e., the time
required by the WIM orchestrator to look for a new path
and install the relevant flows, and to delete flows from the
overloaded switches along the old path. Measurements showed
that the time required to setup a path triggered by the WIM
orchestrator is (generally) influenced by the number of edge
cloud domains traversed by the chain being established, e.g.:
setup time is around 20s when a chain is spread across 2 DCs,
and around 30-35s for chains spreading across 3 DCs. On the
other hand, the measured redirection time was relatively low
(around 6s) with respect to the overall setup time.

Table II compares the end-to-end latency obtained as the
sum of retrieved VFs processing latency and the inter-DC la-
tency measurements, used by the Chain Optimizer to compute
the service chain path (i.e., e2e latency @Chain Optimizer),
with the end-to-end latency actually experienced by data while
flowing in the established service chains and measured using
ping commands (i.e., e2e latency @established chains). For
each run a sequence of 10 service chain requests is sent for
a given chain length. We can notice that the actual measured
values and the ones estimated by the CO are pretty close,
which proves the robustness of the latency-awareness feature
and of the computation process of our orchestration system
that allows for an efficient selection of the DCs and of the
VFs instances.

TABLE II
END-TO-END LATECY: @CHAIN OPTIMIZER VS. @ESTBLISHED CHAINS.

Chain Length Latency @Chain Opti-
mizer [s]

Latency @established
chains [s]

2 56.24 76.7

3 72.38 77.2

4 103.86 112

As part of a side-activity assessment, we measured the
average TCP throughput when the generated traffic traverses
service chains with an increasing number of VF instances. As a
result, the average throughput was very close to the maximum
value achievable with the 1 Gbps physical interfaces installed
in the Virtual Wall servers. The measurements we obtained
proved that the Virtual Wall facility is able to provide full
capacity to a typical NFV/SDN infrastructure based on Open-
Stack and Open vSwitch components. This is mainly due to the
possibility offered by Virtual Wall to deploy slices using bare-
metal servers, thus avoiding the overhead of an infrastructure
emulated through, e.g., nested virtualization. Therefore, the
Fed4FIRE+ facilities (and Virtual Wall in particular) can be

considered a good candidate to perform realistic experiments
on non-trivial NFV/SDN infrastructures based on production-
level software tools.

IV. CONCLUSIONS

In this work we presented an end-to-end orchestration
system comprising dynamic VF selection and intent-based
traffic steering control capabilities supporting latency-aware
and reliable service chaining over geographically distributed
SDN-based cloud DCs interconnected through SDN WAN.
We carried out experiments to validate the orchestration sys-
tem using the Fed4FIRE platform that allowed us to set-
up a realistic and composite SDN/NFV deployment. These
activities also allowed us to derive lessons learnt and best
practices to foster the use of SDN and virtual infrastructure
and effectively enable 5G service delivery on top of dis-
tributed edge cloud deployments. In the near future, we plan
to integrate the proposed orchestration functionalities with a
complete implementation of a MANO orchestrator, as well as
perform extensive evaluation in comparison with alternative
VF selection approaches.

ACKNOWLEDGEMENT

This work was funded in part by the LASH-5G project
(Grant Agreement no. 732638) and the DiMoViS-TRIANGLE
project (Grant Agreement no. 688712),

REFERENCES

[1] F. Yousaf et al., “NFV and sdn key technology enablers for 5g networks,”
in IEEE Journal on Selected Areas in Communications, 2017.

[2] S. Zhang et al., “5G: Towards energy-efficient, low-latency and high-
reliable communications networks,” in IEEE ICCS, Nov 2014.

[3] I. Parvez et al., “A survey on low latency towards 5G: Ran, core network
and caching solutions,” IEEE Communications Surveys Tutorials, 2018.

[4] A. M. Medhat et al., “Near optimal service function path instantiation
in a multi-datacenter environment,” in IEEE CNSM, 2015.

[5] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and
selection for on-path flow processing,” in COMSNETS, 2015.

[6] A. Lombardo et al., “An analytical tool for performance evaluation of
software defined networking services,” in IEEE NOMS 2014.

[7] M. T. Thai et al., “A joint network and server load balancing algorithm
for chaining virtualized network functions,” in IEEE ICC, 2016.

[8] A. M. Medhat et al., “Extensible framework for elastic orchestration of
service function chains in 5g networks,” in IEEE NFV-SDN, Nov 2017.

[9] B. Sonkoly et al., “UNIFYing cloud and carrier network resources: An
architectural view,” in IEEE GLOBECOM, 2015.

[10] A. Sgambelluri et al., “Orchestration of Network Services Across
Multiple Operators: The 5G Exchange Prototype,” in EUCNC, 2017.

[11] https://www.fed4fire.eu/.
[12] B. Martini et al., “Latency-aware composition of virtual functions in

5g,” in Proceedings of IEEE NetSoft 2015, April 2015, pp. 1–6.
[13] A. Mohammed et al., “Sdn controller for network-aware adaptive

orchestration in dynamic service chaining,” in IEEE Netsoft 2016.
[14] F. Callegati et al., “Performance of intent-based virtualized network

infrastructure management,” in Proceedings of IEEE ICC 2017.
[15] “Network functions virtualisation (NFV): Architectural framework,”

ETSI GS NFV, vol. 2, no. 2, p. V1, 2013.
[16] Y. Boucadair et al., “Service function chaining service, subscriber and

host identification use cases and metadata,” IETF Secretariat, Tech. Rep.
draft-sarikaya-sfc-hostid-serviceheader-04.txt, 2017.

[17] B. Martini and F. Paganelli, “A service-oriented approach for dynamic
chaining of virtual network functions over multi-provider software-
defined networks,” Future Internet, vol. 8, no. 2, p. 24, 2016.

[18] F. Callegati et al., “Sdn for dynamic nfv deployment,” IEEE Communi-
cations Magazine, vol. 54, no. 10, pp. 89–95, 2016.

