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Abstract—This paper describes an experiment deployed as 

a use case on top of the IRIS testbed that implements two 

concurrent network slices on the same cloud infrastructure: 

one emulating a mobile virtual network operator public safety 

service with high throughput and low latency requirements 

and the other emulating an over-the-top service provider 

(delay tolerant – best effort slice). A scaling algorithm with the 

ability to dynamically allocate computational resources among 

the two slices is described, implemented, and evaluated in 

terms of performance gains in the priority slice when the 

shared computational resources are scarce. The results 

indicate that under depleted computational resources, this 

algorithm can significantly improve the TCP and UDP 

throughput performance of priority slices. 

Keywords—cloud RAN; srsLTE; dynamic scaling; slicing  

I.  INTRODUCTION 

Virtualization of network functions is a growing trend in 
industry and academia, due to its potential to foster 
significant reductions in operating expenses [1] [2]. 
Therefore, there is an increasing softwarization of 
communication networks, where network functions are 
translated from monolithic pieces of hardware equipment to 
software components that run over a shared pool of 
computational, storage, and communication resources, which 
can be dynamically provisioned as needed [3]. 

Network softwarization and network slicing are two 
important 5G technology enablers [4] [5]. Implementing 
mobile networks over commercial datacentres has proven 
considerable benefits, however, deploying cloud-based 
mobile networks and serving multiple network slices with 
different requirements over the same virtualised physical 
infrastructure are challenging tasks. The unpredictable 
temporal and spatial variation of traffic demand makes the 
situation worse. In this situation, slice-aware elastic resource 
management approaches are required to guarantee the best 
possible quality of offered services to each slice [6]. 

Two critical resources in 5G systems are radio resources 
and computational resources (e.g., CPUs, RAM, and 
storage). While management of the former is well known and 
studied [7] [8] [9], the elastic management of the latter is a 
relatively new topic in communication systems and the key 
goal of this experiment. 

Slice-aware elastic resource management algorithms 

consider the QoS requirements, Service Level Agreements 
(SLA), and demand of network slices operating on the same 
physical infrastructure to optimally allocate/deallocate, 
possibly in almost real-time, resources to/from each slice. 
Therefore, an elastic management of resources, either 
computational or radio resources, is required to avoid, or 
minimize the impact of resource shortages while increasing 
network’s CAPEX and OPEX. 

For example, as the demand in one network slice 
increases, more computational resources may be allocated to 
that network slice and when the demand decreases, the extra 
computational capacity should revert to the pool of available 
resources. In fact, one of the most immediate and appealing 
advantages of a cloudified network is the possibility of 
reducing costs, by adapting and re-distributing shared 
resources following (and even anticipating) temporal and 
spatial traffic variations. 

A key feature for the implementation of slice-aware 
elastic resource management is the ability to monitor the 
QoS to assess if the SLA are being met across different 
network slices. This granular KPI visibility in virtual 
network infrastructures allows the orchestrator to make just-
in-time capacity allocation, ensuring that priority slices have 
the compute and networking resources they need to meet the 
performance targets required by the service. 

A. Objectives of the experiment 

The main objective of this experiment is the 
implementation and validation of an elastic resource 
management algorithm (ELASTIC) able to manage multiple 
Network Slice Instances (NSI) over the same physical 
resources, while optimizing the allocation of computational 
resources to each slice based on its dynamic requirements. 

The experiment deploys two services over two network 
slices, with a focus on the QoS-aware control and CPU 
usage. The goal is to have two competing network slices on 
the cloud infrastructure: one emulating a mobile virtual 
network operator (MVNO) Public Safety service with high 
throughput and low latency requirements and the other 
emulating an over-the-top (OTT) service provider (delay 
tolerant – best effort slice). A resource management 
algorithm is implemented and evaluated in terms of 
performance gains when operating under scarce 
computational resources. 
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The main challenges of this experiment can be divided 
into two distinct dimensions: understanding how the srslte 
software uses computational resources under different 
eNodeB configurations and traffic profiles, and how to 
manage computational resources so that the higher priority 
slice can cope with stringent SLA requirements without 
disrupting the low priority slice. 

II. EXPERIMENT DESIGN AND 

IMPLEMENTATION 

The experiment has been deployed at IRIS, the 
reconfigurable radio testbed at Trinity College, Dublin, 
which provides virtualized radio hardware, software 
virtualisation, Cloud-RAN, Network Functions Virtualisation 
(NFV), and Software Defined Networking (SDN) 
technologies to support experimental research. The 
experiment setup uses four computing nodes, as can be seen 
in the diagram shown in Fig. 1. Each computing node has the 
following specifications and objectives: 

Machine A: this is an Ubuntu 18 physical machine, with 
4 cores running at maximum speed of 3.5 GHz. It is 
connected to a B210 Universal Software Radio Peripheral 
(USRP) through USB3. Its role is to implement the EPC and 
eNodeB components of the LTE network. 

Machine B: this is also an Ubuntu 18 physical machine, 
with 4 cores running at a maximum speed of 3.5 GHZ. It is 
connected to a B210 USRP through USB3 and it implements 
the UE component of the LTE network. 

Both USRPs are configured in single antenna mode, 
using the LTE EARFCN frequencies: DL=2685.0 MHZ, 
UL=2565.0 MHz. 

Machine C: this is a virtual machine with 2 cores, 
running an IRIS Ubuntu 16 plain image. It is used to 
exchange traffic patterns with the UE through the LTE 
network, using the iperf tool. This role could have been 
implemented in the physical machine A, but it would 
consume resources and possibly affect the CPU usage 
results. 

Machine D: this is a virtual machine with 2 cores, 

running an IRIS Ubuntu 16 plain image. This machine 
implements the ELASTIC algorithm: it receives traffic and 
CPU usage data from the two probes and determines the 
actions to perform to comply with QoS requirements. 

The experiment has been deployed and run remotely 
using JFED [10], which provided setup features and SSH 
access to each virtual machine. 

III. BEHAVIOUR OF SRSLTE UNDER STRESS 

The srsLTE suite [11] is a free and open-source LTE 
software developed by Software Radio Systems Limited. It 
comprises the EPC, eNodeB and UE components built upon 
the srsLTE library, a high-performance LTE library for 
software defined radio applications. 

The eNodeB software is highly configurable, by using 
specific options in command line or in the configuration file. 
Two key configurable parameters are the number of physical 
resource blocks (PRB) and the Modulation and Coding 
Scheme (MCS) index to use in the downlink and uplink 
channels. The eNodeB component supports 15, 25, 50, 75 or 
100 PRB. 

Computational efficiency is the most challenging aspect 
of a Software Defined Radio (SDR) application, especially 
on the LTE receiver, which is much more complex than the 
transmitter [11]. In order to cope with the stringent time 
constraints of the LTE PHY layer, the srsLTE Linux 
implementation of the eNodeB component makes use of 
parallel processing and real time SCHED_FIFO scheduling 
policy. In this specific experiment, the main eNodeB process 
running on machine A deploys 20 child threads scattered 
among the 4 available CPU cores. 

This parallelization is crucial to allow horizontal 
scalability in Cloud RAN environments, using platforms that 
allow dynamic scaling, such as kubernetes autoscaling. 

A. Testing methodology 

The first measurements of this experiment aimed to 
gather data about the CPU usage in the eNodeB machine and 
downlink and uplink maximum throughputs for each mode. 

 

Fig. 1. Experiment setup in IRIS 
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A mode is a combination of a specific PRB number and 
MCS index, for example PRB75, MCS 22. 

To test the maximum throughput for each mode and its 
corresponding CPU load, the link was submitted to specific 
UDP traffic profiles, which were generated employing the 
iperf tool. UDP was chosen instead of TCP, because 
preliminary tests with TCP showed significant temporal 
variability and average throughput below the expected 
values. This variability may be explained by the congestion 
control mechanisms of TCP, that considerably reduce the 
throughput when lost packets are detected; something that 
happens frequently in wireless networks. Therefore, most of 
the tests performed in this experiment use UDP, which is 
more suitable to saturate the LTE network and check its 
limits. 

Fig. 2 illustrates the UDP traffic profiles that were used 
in the initial tests. Each test took 150 seconds to complete 
and comprises four different 30 seconds periods, identified in 
the figure as A, B, C and D. 

The first period (A) is used to measure the CPU 
occupation when the LTE network is idle, without any 
traffic. The second period (B) measures the CPU occupation 
and the achieved throughput when the downlink (from the 
eNodeB to the UE) is saturated with UDP packets. The third 
period (C) is similar to the previous one, but now in the 
uplink direction (from the UE to eNodeB). Finally, in the last 
period (D) the CPU occupation and throughput are measured 
when both the downlink and uplink channels are flooded 
with UDP packets. This is the most challenging test, 
especially in modes with high PRB and MCS. 

Fig. 2 also shows the results of one of these tests, applied 
to the PRB75, MCS22 mode. The CPU usage percentage 
reported in this paper is always relative to one core, thus, 
percentages above 100% represent a load of more than one 
core. 

This test was repeated for 20 different eNodeB modes, 
and the results of 12 of those tests are shown in Table 1. 
Each column represents the following: 

• Mode: the eNodeB configuration regarding PRB and 
maximum MCS. Only 4 MCS values were chosen; 
they represent a range of different modulation coding 
schemes. The last one (auto) means that the MCS 
index is automatically defined as a function of the 
signal quality reported by the UE. The maximum 
MCS index values observed in the tests with auto 
mode were around 25. 

• Downlink max throughput: this is the average 
throughput observed in the interval B of Fig. 2. 

• Uplink max throughput: this is the average 
throughput observed in the interval C of Fig. 2. 

• Downlink factor (alpha): the calculated cost of CPU% 
for each downlink Mbit/s. 

• Uplink factor (beta): the calculated cost of CPU% for 
each uplink Mbit/s. 

The evolution of CPU load throughout the different 
phases of each test was also registered; this information was 
then used to calculate the alpha and beta factors. They were 
calculated from the maximum throughput values and the 
respective increase in CPU usage. 

These factors are useful to estimate the CPU load of a 
specific mode, given the expected downlink and uplink data 
rates. However, they can be applied to discretionary 
throughputs only if the CPU usage increases linearly with the 
data rate. To validate this hypothesis, a test with a UDP ramp 
profile (linearly increasing throughput) was also designed 
and implemented. The results obtained in the test provided 
evidence that indeed the CPU usage varies linearly with the 
throughput. 

Therefore, the CPU usage (C) of a specific mode can be 
roughly estimated with the formula: 

C = I + α D + β U 

Where I is the idle CPU usage for that mode, α is the 
downlink factor, D is the downlink throughput, β is the 
uplink factor and U is the uplink throughput. 

 
Fig. 2. Test results for mode PRB75 MCS22. 

TABLE I.  A SUMMARY OF THE INITIAL TEST RESULTS 

Mode Results 

PRB MC

S 
Downlink  

(Mbit/s) 

Uplink 

(Mbit/s) 

alpha 

factor 

beta 

factor 

50 

10 7.7 7.7 1.53 2.35 

17 14.8 14.3 1.11 1.47 

22 21.2 20.0 0.86 1.50 

auto 23.6 22.3 0.73 1.72 

75 

10 11.5 11.1 0.95 1.65 

17 22.4 20.1 0.88 1.76 

22 31.8 28.6 0.75 1.39 

auto 34.6 33.2 0.67 1.63 

100 

10 15.4 16.5 1.38 2.67 

17 29.8 30.9 0.94 2.07 

22 41.2 44.2 0.94 1.74 

auto 42.9 47.7 0.82 2.13 
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IV. ELASTIC MANAGEMENT OF 

COMPUTATIONAL RESOURCES 

The ELASTIC algorithm is divided into two different 
components: the ELASTIC master, which applies to the high 
priority slice and the ELASTIC slave, which affects the OTT 
low priority slice as a result of changes in the high priority 
slice. 

The ELASTIC master is continuously probing QoS 
indicators on the high priority slice. If the current PRB and 
MCS configuration is not suitable to meet new QoS 
requirements, action is taken: the slice is configured with 
new PRB and MCS values and, if this new configuration 
needs it, more resources are allocated from the OTT slice. 
Fig. 3 illustrates this algorithm. 

The decision about which PRB/MCS mode should be 
used, given specific downlink/uplink required throughputs, is 
based on the data of Table 1. The maximum CPU usage of 
each PRB/MCS mode is also taken from the same table. 

The ELASTIC slave basically receives the indication 
from the master of the amount of resources that it needs to 
free and changes the PRB and MCS values, so that the slice 
can run smoothly with the diminished available resources. 
Obviously, its performance will be decreased as well. Fig. 4 
shows how it works. 

The OTT slice adaptation to the new level of available 
resources (changing the PRB and MCS values) is necessary, 
because without that adjustment the eNodeB software would 
completely deplete all the available resources. Under these 
circumstances, the software performs erratically: packet 
forwarding stops for some periods, radio link failures come 
up and even software crashes have been observed. Thus, it is 
crucial to configure the slice with PRB and MCS values that 
do not deplete the available resources. 

The decision about which PRB/MCS mode to use under 
specific CPU availability is based on a look up table, 
statically generated from the values obtained in the tests 
described in section III, thus, it is tailored for this specific 

scenario. Ideally, this table should be dynamically created, 
using for example machine learning methods, so that it can 
adapt to different scenarios and even to changes over time in 
the same scenario. However, in different scenarios, the 
ELASTIC algorithm remains the same, only the lookup table 
would have to be changed. 

The MCS values for downlink and uplink are sometimes 
different: they were selected considering that an OTT slice 
will have to deal mostly with downlink traffic, therefore the 
priority has been given to the downlink flow. 

V. RESULTS 

The ELASTIC algorithm was tested with two different 
traffic profiles: a full speed download/upload TCP profile, 
and a complex UDP profile with data bursts of different 
speeds and mixed downlink/uplink flows. 

The testing scenario considers that both the slices share 
the same computational environment, and that initially the 
CPU resources are equally divided by both slices: 100% for 
each slice from a total CPU power of 200% (equivalent to a 
two-core machine). The default eNodeB mode for both slices 
is PRB75 MCS auto. 

Considering that the ELASTIC algorithm works 
according with the master/slave paradigm, it was not 
necessary to run both slices at the same time. Instead, results 
of CPU allocation from the master were recorded and 
replayed later by the slave component of ELASTIC. 

A. ELASTIC behaviour with TCP traffic 

The first TCP test measured the difference in throughput 
in the high priority slice when downloading at full speed, 
first without ELASTIC and then with ELASTIC activated. 
Traffic was generated with iperf in TCP mode, for 100 
seconds. A second test was performed in the uplink direction. 

Fig. 5 shows the results of these tests. As can be seen in 
the charts, the throughput is substantially higher when 
ELASTIC is active. This is explained by the automatic 
switching to the PRB100 mode instead of keeping the default 
PRB75 mode – keep in mind that this is only possible by 
dynamically borrowing computational resources from the 
OTT slice. These tests showed average gains in throughput 
of 48% and 56%, respectively in the downlink and uplink 
flows. 

The last TCP test involved measuring performance gains 
with TCP full speed traffic in the downlink and uplink flows 
simultaneously. In this case, the performance improvement 

 
Fig. 3. The ELASTIC master algorithm. 

Fig. 4. The ELASTIC slave algorithm. 

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore.  Restrictions apply. 



with ELASTIC was 50% in both flows. 

B. ELASTIC behaviour with UDP traffic 

An UDP test was also devised to evaluate the behaviour 
of ELASTIC under rapid changing traffic bursts of different 
throughputs, including simultaneous operation in downlink 
and uplink and sudden bursts in one direction when it is 
already operating with high throughput on the other 
direction. 

The results from this test can be seen in Fig. 6. They 
show that even under these demanding circumstances the 
ELASTIC mode was able to cope with the requested 
throughput, while the normal mode struggled to handle high 
throughputs simultaneously in the downlink and uplink 
flows. This is particularly evident in the zones A, B and C of 
the downlink chart and the zone D of the uplink chart. 

C. ELASTIC resource allocation 

In the previous test (UDP burst traffic profile with 
simultaneous downlink and uplink) the results obtained with 
the ELASTIC algorithm are only possible because in this 
case the eNodeB process has been temporarily switched to 
higher PRB and MCS values in the critical periods, which 
requires more than the initial 100% available CPU capacity 
to work correctly. 

Fig. 7 shows the CPU usage measured during the test, 

which corroborates that in the most challenging periods (high 
throughput, especially in the uplink direction) the ELASTIC 
algorithm switched the eNodeB mode to higher PRB and 
MCS, thus explaining the CPU usage above 100%. 

D. Consequences on the OTT slice 

Each time the ELASTIC algorithm needs to switch to a 
PRB/MCS mode that requires more CPU resources than the 
initial allocated value for the priority slice, it must allocate 
that extra CPU resources from the OTT slice. Whenever this 
happens, the OTT slice must adapt to the new diminished 
available CPU resources, changing its PRB/MCS mode to 
lower values. Failure to perform this adaptation results in 
erratic behaviour, ranging from radio link failures to software 
crashes, so it is absolutely necessary to switch to PRB/MCS 
values that can work correctly with the diminished available 
resources. 

In order to evaluate the behaviour of the ELASTIC 
algorithm concerning the OTT slice adaptation under the 
conditions of the UDP burst downlink/uplink, the CPU 
allocation of Fig. 7 was recorded and replayed later in the 
OTT slice, when it was downloading and uploading TCP 
traffic at full speed. Fig. 8 illustrates the results which were 
obtained in this test. The first chart shows the OTT slice’s 
CPU usage during the test. The light green area represents 
the available CPU resources – the blank “holes” correspond 
to the resources taken by ELASTIC and given to the priority 
slice. The blue line is the measured CPU usage. Notice how 
the ELASTIC algorithm adapted the CPU usage to the 
available resources so well, just by switching to the most 
adequate PRB/MCS mode. 

The second chart shows what happens to a TCP full 
speed download during the test. The reduction of throughput 
during the periods of CPU depletion is noticeable. 

 
Fig. 5. TCP throughput comparison. 

 
Fig. 8. Adaptation of the OTT slice to depleted resources. 

 
Fig. 6. UDP throughput comparison. 

 
Fig. 7. CPU allocated to the priority slice. 
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Furthermore, it is also evident the priority given to the 
downlink flow by the ELASTIC algorithm, which is 
achieved by being more aggressive in the reduction of the 
MCS value in the uplink rather than in the downlink. This is 
a design feature, because uplink traffic requires more CPU 
power than downlink traffic, so this is an efficient way of 
reducing the slice’s CPU usage. Moreover, in OTT slices it is 
expected that traffic will flow mostly in the downlink 
direction, thus this strategy minimizes the impact on QoE as 
well. 

VI. CONCLUSIONS 

The main finding of this experiment is that dynamic 
scaling of shared computational resources in cloud RAN 
environments is indeed an effective tool to ensure that high 
priority LTE slices can cope with critical periods of high 
throughput. 

To allocate adequate computational resources for specific 
traffic profiles, the orchestration algorithm must be able to 
estimate the optimal PRB/MCS mode to use and its 
respective computational load. Thus, a learning stage is 
essential to build lookup tables that relate throughput, 
PRB/MCS modes and CPU load. The algorithm can then use 
this lookup table to decide which mode to use and the 
computational resources to allocate. 

The performance tests done in this experiment revealed 
that the ELASTIC algorithm was able to achieve throughput 
performance gains of about 50% on TCP traffic and 30% on 
UDP traffic (during high throughput peaks). 
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