
Experimental validation of dynamic scaling of

computational resources in cloud radio access

networks

O. Santos

Instituto Politécnico de Castelo Branco

Castelo Branco, Portugal

oas@ipcb.pt

D. Collins

CONNECT centre, Trinity College

Dublin, Ireland

collindi@tcd.ie

P. Marques

Instituto Politécnico de Castelo Branco

Castelo Branco, Portugal

paulomarques@ipcb.pt

H. Marques

Instituto Politécnico de Castelo Branco

Castelo Branco, Portugal

hugo@ipcb.pt

Abstract—This paper describes an experiment deployed as

a use case on top of the IRIS testbed that implements two

concurrent network slices on the same cloud infrastructure:

one emulating a mobile virtual network operator public safety

service with high throughput and low latency requirements

and the other emulating an over-the-top service provider

(delay tolerant – best effort slice). A scaling algorithm with the

ability to dynamically allocate computational resources among

the two slices is described, implemented, and evaluated in

terms of performance gains in the priority slice when the

shared computational resources are scarce. The results

indicate that under depleted computational resources, this

algorithm can significantly improve the TCP and UDP

throughput performance of priority slices.

Keywords—cloud RAN; srsLTE; dynamic scaling; slicing

I. INTRODUCTION

Virtualization of network functions is a growing trend in
industry and academia, due to its potential to foster
significant reductions in operating expenses [1] [2].
Therefore, there is an increasing softwarization of
communication networks, where network functions are
translated from monolithic pieces of hardware equipment to
software components that run over a shared pool of
computational, storage, and communication resources, which
can be dynamically provisioned as needed [3].

Network softwarization and network slicing are two
important 5G technology enablers [4] [5]. Implementing
mobile networks over commercial datacentres has proven
considerable benefits, however, deploying cloud-based
mobile networks and serving multiple network slices with
different requirements over the same virtualised physical
infrastructure are challenging tasks. The unpredictable
temporal and spatial variation of traffic demand makes the
situation worse. In this situation, slice-aware elastic resource
management approaches are required to guarantee the best
possible quality of offered services to each slice [6].

Two critical resources in 5G systems are radio resources
and computational resources (e.g., CPUs, RAM, and
storage). While management of the former is well known and
studied [7] [8] [9], the elastic management of the latter is a
relatively new topic in communication systems and the key
goal of this experiment.

Slice-aware elastic resource management algorithms

consider the QoS requirements, Service Level Agreements
(SLA), and demand of network slices operating on the same
physical infrastructure to optimally allocate/deallocate,
possibly in almost real-time, resources to/from each slice.
Therefore, an elastic management of resources, either
computational or radio resources, is required to avoid, or
minimize the impact of resource shortages while increasing
network’s CAPEX and OPEX.

For example, as the demand in one network slice
increases, more computational resources may be allocated to
that network slice and when the demand decreases, the extra
computational capacity should revert to the pool of available
resources. In fact, one of the most immediate and appealing
advantages of a cloudified network is the possibility of
reducing costs, by adapting and re-distributing shared
resources following (and even anticipating) temporal and
spatial traffic variations.

A key feature for the implementation of slice-aware
elastic resource management is the ability to monitor the
QoS to assess if the SLA are being met across different
network slices. This granular KPI visibility in virtual
network infrastructures allows the orchestrator to make just-
in-time capacity allocation, ensuring that priority slices have
the compute and networking resources they need to meet the
performance targets required by the service.

A. Objectives of the experiment

The main objective of this experiment is the
implementation and validation of an elastic resource
management algorithm (ELASTIC) able to manage multiple
Network Slice Instances (NSI) over the same physical
resources, while optimizing the allocation of computational
resources to each slice based on its dynamic requirements.

The experiment deploys two services over two network
slices, with a focus on the QoS-aware control and CPU
usage. The goal is to have two competing network slices on
the cloud infrastructure: one emulating a mobile virtual
network operator (MVNO) Public Safety service with high
throughput and low latency requirements and the other
emulating an over-the-top (OTT) service provider (delay
tolerant – best effort slice). A resource management
algorithm is implemented and evaluated in terms of
performance gains when operating under scarce
computational resources.

978-1-6654-1779-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 2
6t

h
In

te
rn

at
io

na
l W

or
ks

ho
p

on
 C

om
pu

te
r A

id
ed

 M
od

el
in

g
an

d
De

sig
n

of
 C

om
m

un
ic

at
io

n
Li

nk
s a

nd
 N

et
w

or
ks

 (C
AM

AD
) |

 9
78

-1
-6

65
4-

17
79

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CA

M
AD

52
50

2.
20

21
.9

61
78

04

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore. Restrictions apply.

The main challenges of this experiment can be divided
into two distinct dimensions: understanding how the srslte
software uses computational resources under different
eNodeB configurations and traffic profiles, and how to
manage computational resources so that the higher priority
slice can cope with stringent SLA requirements without
disrupting the low priority slice.

II. EXPERIMENT DESIGN AND

IMPLEMENTATION

The experiment has been deployed at IRIS, the
reconfigurable radio testbed at Trinity College, Dublin,
which provides virtualized radio hardware, software
virtualisation, Cloud-RAN, Network Functions Virtualisation
(NFV), and Software Defined Networking (SDN)
technologies to support experimental research. The
experiment setup uses four computing nodes, as can be seen
in the diagram shown in Fig. 1. Each computing node has the
following specifications and objectives:

Machine A: this is an Ubuntu 18 physical machine, with
4 cores running at maximum speed of 3.5 GHz. It is
connected to a B210 Universal Software Radio Peripheral
(USRP) through USB3. Its role is to implement the EPC and
eNodeB components of the LTE network.

Machine B: this is also an Ubuntu 18 physical machine,
with 4 cores running at a maximum speed of 3.5 GHZ. It is
connected to a B210 USRP through USB3 and it implements
the UE component of the LTE network.

Both USRPs are configured in single antenna mode,
using the LTE EARFCN frequencies: DL=2685.0 MHZ,
UL=2565.0 MHz.

Machine C: this is a virtual machine with 2 cores,
running an IRIS Ubuntu 16 plain image. It is used to
exchange traffic patterns with the UE through the LTE
network, using the iperf tool. This role could have been
implemented in the physical machine A, but it would
consume resources and possibly affect the CPU usage
results.

Machine D: this is a virtual machine with 2 cores,

running an IRIS Ubuntu 16 plain image. This machine
implements the ELASTIC algorithm: it receives traffic and
CPU usage data from the two probes and determines the
actions to perform to comply with QoS requirements.

The experiment has been deployed and run remotely
using JFED [10], which provided setup features and SSH
access to each virtual machine.

III. BEHAVIOUR OF SRSLTE UNDER STRESS

The srsLTE suite [11] is a free and open-source LTE
software developed by Software Radio Systems Limited. It
comprises the EPC, eNodeB and UE components built upon
the srsLTE library, a high-performance LTE library for
software defined radio applications.

The eNodeB software is highly configurable, by using
specific options in command line or in the configuration file.
Two key configurable parameters are the number of physical
resource blocks (PRB) and the Modulation and Coding
Scheme (MCS) index to use in the downlink and uplink
channels. The eNodeB component supports 15, 25, 50, 75 or
100 PRB.

Computational efficiency is the most challenging aspect
of a Software Defined Radio (SDR) application, especially
on the LTE receiver, which is much more complex than the
transmitter [11]. In order to cope with the stringent time
constraints of the LTE PHY layer, the srsLTE Linux
implementation of the eNodeB component makes use of
parallel processing and real time SCHED_FIFO scheduling
policy. In this specific experiment, the main eNodeB process
running on machine A deploys 20 child threads scattered
among the 4 available CPU cores.

This parallelization is crucial to allow horizontal
scalability in Cloud RAN environments, using platforms that
allow dynamic scaling, such as kubernetes autoscaling.

A. Testing methodology

The first measurements of this experiment aimed to
gather data about the CPU usage in the eNodeB machine and
downlink and uplink maximum throughputs for each mode.

Fig. 1. Experiment setup in IRIS

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore. Restrictions apply.

A mode is a combination of a specific PRB number and
MCS index, for example PRB75, MCS 22.

To test the maximum throughput for each mode and its
corresponding CPU load, the link was submitted to specific
UDP traffic profiles, which were generated employing the
iperf tool. UDP was chosen instead of TCP, because
preliminary tests with TCP showed significant temporal
variability and average throughput below the expected
values. This variability may be explained by the congestion
control mechanisms of TCP, that considerably reduce the
throughput when lost packets are detected; something that
happens frequently in wireless networks. Therefore, most of
the tests performed in this experiment use UDP, which is
more suitable to saturate the LTE network and check its
limits.

Fig. 2 illustrates the UDP traffic profiles that were used
in the initial tests. Each test took 150 seconds to complete
and comprises four different 30 seconds periods, identified in
the figure as A, B, C and D.

The first period (A) is used to measure the CPU
occupation when the LTE network is idle, without any
traffic. The second period (B) measures the CPU occupation
and the achieved throughput when the downlink (from the
eNodeB to the UE) is saturated with UDP packets. The third
period (C) is similar to the previous one, but now in the
uplink direction (from the UE to eNodeB). Finally, in the last
period (D) the CPU occupation and throughput are measured
when both the downlink and uplink channels are flooded
with UDP packets. This is the most challenging test,
especially in modes with high PRB and MCS.

Fig. 2 also shows the results of one of these tests, applied
to the PRB75, MCS22 mode. The CPU usage percentage
reported in this paper is always relative to one core, thus,
percentages above 100% represent a load of more than one
core.

This test was repeated for 20 different eNodeB modes,
and the results of 12 of those tests are shown in Table 1.
Each column represents the following:

• Mode: the eNodeB configuration regarding PRB and
maximum MCS. Only 4 MCS values were chosen;
they represent a range of different modulation coding
schemes. The last one (auto) means that the MCS
index is automatically defined as a function of the
signal quality reported by the UE. The maximum
MCS index values observed in the tests with auto
mode were around 25.

• Downlink max throughput: this is the average
throughput observed in the interval B of Fig. 2.

• Uplink max throughput: this is the average
throughput observed in the interval C of Fig. 2.

• Downlink factor (alpha): the calculated cost of CPU%
for each downlink Mbit/s.

• Uplink factor (beta): the calculated cost of CPU% for
each uplink Mbit/s.

The evolution of CPU load throughout the different
phases of each test was also registered; this information was
then used to calculate the alpha and beta factors. They were
calculated from the maximum throughput values and the
respective increase in CPU usage.

These factors are useful to estimate the CPU load of a
specific mode, given the expected downlink and uplink data
rates. However, they can be applied to discretionary
throughputs only if the CPU usage increases linearly with the
data rate. To validate this hypothesis, a test with a UDP ramp
profile (linearly increasing throughput) was also designed
and implemented. The results obtained in the test provided
evidence that indeed the CPU usage varies linearly with the
throughput.

Therefore, the CPU usage (C) of a specific mode can be
roughly estimated with the formula:

C = I + α D + β U

Where I is the idle CPU usage for that mode, α is the
downlink factor, D is the downlink throughput, β is the
uplink factor and U is the uplink throughput.

Fig. 2. Test results for mode PRB75 MCS22.

TABLE I. A SUMMARY OF THE INITIAL TEST RESULTS

Mode Results

PRB MC

S
Downlink

(Mbit/s)

Uplink

(Mbit/s)

alpha

factor

beta

factor

50

10 7.7 7.7 1.53 2.35

17 14.8 14.3 1.11 1.47

22 21.2 20.0 0.86 1.50

auto 23.6 22.3 0.73 1.72

75

10 11.5 11.1 0.95 1.65

17 22.4 20.1 0.88 1.76

22 31.8 28.6 0.75 1.39

auto 34.6 33.2 0.67 1.63

100

10 15.4 16.5 1.38 2.67

17 29.8 30.9 0.94 2.07

22 41.2 44.2 0.94 1.74

auto 42.9 47.7 0.82 2.13

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore. Restrictions apply.

IV. ELASTIC MANAGEMENT OF

COMPUTATIONAL RESOURCES

The ELASTIC algorithm is divided into two different
components: the ELASTIC master, which applies to the high
priority slice and the ELASTIC slave, which affects the OTT
low priority slice as a result of changes in the high priority
slice.

The ELASTIC master is continuously probing QoS
indicators on the high priority slice. If the current PRB and
MCS configuration is not suitable to meet new QoS
requirements, action is taken: the slice is configured with
new PRB and MCS values and, if this new configuration
needs it, more resources are allocated from the OTT slice.
Fig. 3 illustrates this algorithm.

The decision about which PRB/MCS mode should be
used, given specific downlink/uplink required throughputs, is
based on the data of Table 1. The maximum CPU usage of
each PRB/MCS mode is also taken from the same table.

The ELASTIC slave basically receives the indication
from the master of the amount of resources that it needs to
free and changes the PRB and MCS values, so that the slice
can run smoothly with the diminished available resources.
Obviously, its performance will be decreased as well. Fig. 4
shows how it works.

The OTT slice adaptation to the new level of available
resources (changing the PRB and MCS values) is necessary,
because without that adjustment the eNodeB software would
completely deplete all the available resources. Under these
circumstances, the software performs erratically: packet
forwarding stops for some periods, radio link failures come
up and even software crashes have been observed. Thus, it is
crucial to configure the slice with PRB and MCS values that
do not deplete the available resources.

The decision about which PRB/MCS mode to use under
specific CPU availability is based on a look up table,
statically generated from the values obtained in the tests
described in section III, thus, it is tailored for this specific

scenario. Ideally, this table should be dynamically created,
using for example machine learning methods, so that it can
adapt to different scenarios and even to changes over time in
the same scenario. However, in different scenarios, the
ELASTIC algorithm remains the same, only the lookup table
would have to be changed.

The MCS values for downlink and uplink are sometimes
different: they were selected considering that an OTT slice
will have to deal mostly with downlink traffic, therefore the
priority has been given to the downlink flow.

V. RESULTS

The ELASTIC algorithm was tested with two different
traffic profiles: a full speed download/upload TCP profile,
and a complex UDP profile with data bursts of different
speeds and mixed downlink/uplink flows.

The testing scenario considers that both the slices share
the same computational environment, and that initially the
CPU resources are equally divided by both slices: 100% for
each slice from a total CPU power of 200% (equivalent to a
two-core machine). The default eNodeB mode for both slices
is PRB75 MCS auto.

Considering that the ELASTIC algorithm works
according with the master/slave paradigm, it was not
necessary to run both slices at the same time. Instead, results
of CPU allocation from the master were recorded and
replayed later by the slave component of ELASTIC.

A. ELASTIC behaviour with TCP traffic

The first TCP test measured the difference in throughput
in the high priority slice when downloading at full speed,
first without ELASTIC and then with ELASTIC activated.
Traffic was generated with iperf in TCP mode, for 100
seconds. A second test was performed in the uplink direction.

Fig. 5 shows the results of these tests. As can be seen in
the charts, the throughput is substantially higher when
ELASTIC is active. This is explained by the automatic
switching to the PRB100 mode instead of keeping the default
PRB75 mode – keep in mind that this is only possible by
dynamically borrowing computational resources from the
OTT slice. These tests showed average gains in throughput
of 48% and 56%, respectively in the downlink and uplink
flows.

The last TCP test involved measuring performance gains
with TCP full speed traffic in the downlink and uplink flows
simultaneously. In this case, the performance improvement

Fig. 3. The ELASTIC master algorithm.

Fig. 4. The ELASTIC slave algorithm.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore. Restrictions apply.

with ELASTIC was 50% in both flows.

B. ELASTIC behaviour with UDP traffic

An UDP test was also devised to evaluate the behaviour
of ELASTIC under rapid changing traffic bursts of different
throughputs, including simultaneous operation in downlink
and uplink and sudden bursts in one direction when it is
already operating with high throughput on the other
direction.

The results from this test can be seen in Fig. 6. They
show that even under these demanding circumstances the
ELASTIC mode was able to cope with the requested
throughput, while the normal mode struggled to handle high
throughputs simultaneously in the downlink and uplink
flows. This is particularly evident in the zones A, B and C of
the downlink chart and the zone D of the uplink chart.

C. ELASTIC resource allocation

In the previous test (UDP burst traffic profile with
simultaneous downlink and uplink) the results obtained with
the ELASTIC algorithm are only possible because in this
case the eNodeB process has been temporarily switched to
higher PRB and MCS values in the critical periods, which
requires more than the initial 100% available CPU capacity
to work correctly.

Fig. 7 shows the CPU usage measured during the test,

which corroborates that in the most challenging periods (high
throughput, especially in the uplink direction) the ELASTIC
algorithm switched the eNodeB mode to higher PRB and
MCS, thus explaining the CPU usage above 100%.

D. Consequences on the OTT slice

Each time the ELASTIC algorithm needs to switch to a
PRB/MCS mode that requires more CPU resources than the
initial allocated value for the priority slice, it must allocate
that extra CPU resources from the OTT slice. Whenever this
happens, the OTT slice must adapt to the new diminished
available CPU resources, changing its PRB/MCS mode to
lower values. Failure to perform this adaptation results in
erratic behaviour, ranging from radio link failures to software
crashes, so it is absolutely necessary to switch to PRB/MCS
values that can work correctly with the diminished available
resources.

In order to evaluate the behaviour of the ELASTIC
algorithm concerning the OTT slice adaptation under the
conditions of the UDP burst downlink/uplink, the CPU
allocation of Fig. 7 was recorded and replayed later in the
OTT slice, when it was downloading and uploading TCP
traffic at full speed. Fig. 8 illustrates the results which were
obtained in this test. The first chart shows the OTT slice’s
CPU usage during the test. The light green area represents
the available CPU resources – the blank “holes” correspond
to the resources taken by ELASTIC and given to the priority
slice. The blue line is the measured CPU usage. Notice how
the ELASTIC algorithm adapted the CPU usage to the
available resources so well, just by switching to the most
adequate PRB/MCS mode.

The second chart shows what happens to a TCP full
speed download during the test. The reduction of throughput
during the periods of CPU depletion is noticeable.

Fig. 5. TCP throughput comparison.

Fig. 8. Adaptation of the OTT slice to depleted resources.

Fig. 6. UDP throughput comparison.

Fig. 7. CPU allocated to the priority slice.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore. Restrictions apply.

Furthermore, it is also evident the priority given to the
downlink flow by the ELASTIC algorithm, which is
achieved by being more aggressive in the reduction of the
MCS value in the uplink rather than in the downlink. This is
a design feature, because uplink traffic requires more CPU
power than downlink traffic, so this is an efficient way of
reducing the slice’s CPU usage. Moreover, in OTT slices it is
expected that traffic will flow mostly in the downlink
direction, thus this strategy minimizes the impact on QoE as
well.

VI. CONCLUSIONS

The main finding of this experiment is that dynamic
scaling of shared computational resources in cloud RAN
environments is indeed an effective tool to ensure that high
priority LTE slices can cope with critical periods of high
throughput.

To allocate adequate computational resources for specific
traffic profiles, the orchestration algorithm must be able to
estimate the optimal PRB/MCS mode to use and its
respective computational load. Thus, a learning stage is
essential to build lookup tables that relate throughput,
PRB/MCS modes and CPU load. The algorithm can then use
this lookup table to decide which mode to use and the
computational resources to allocate.

The performance tests done in this experiment revealed
that the ELASTIC algorithm was able to achieve throughput
performance gains of about 50% on TCP traffic and 30% on
UDP traffic (during high throughput peaks).

ACKNOWLEDGMENT

This work was supported by the H2020 program under
grant agreement No. 732174 (ORCA project) and the Fundo
Europeu de Desenvolvimento Regional (FEDER) through
the POCI-01-0247-FEDER-046555 (AI4GREEN).

REFERENCES

[1] Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., De Turck, F., &
Boutaba, R. (2015). Network function virtualization: State-of-the-art
and research challenges. IEEE Communications surveys & tutorials,
18(1), 236-262.

[2] S. Abdelwahab, B. Hamdaoui, M. Guizani and T. Znati, "Network
function virtualization in 5G," in IEEE Communications Magazine,
vol. 54, no. 4, pp. 84-91, April 2016, doi:
10.1109/MCOM.2016.7452271.

[3] Serrano, P., (2018) "The path towards a cloud-aware mobile network
protocol stack”, Transactions on Emerging Telecommunications
Technologies, John Wiley & Sons, Ltd.

[4] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck,
"Network Slicing and Softwarization: A Survey on Principles,
Enabling Technologies, and Solutions," in IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2429-2453, thirdquarter 2018,
doi: 10.1109/COMST.2018.2815638.

[5] S. Zhang, "An Overview of Network Slicing for 5G," in IEEE
Wireless Communications, vol. 26, no. 3, pp. 111-117, June 2019,
doi: 10.1109/MWC.2019.1800234.

[6] Y. Zhang, F. Barusso, D. Collins, M. Ruffini and L. A. DaSilva,
"Dynamic Allocation of Processing Resources in Cloud-RAN for a
Virtualised 5G Mobile Network," 2018 26th European Signal
Processing Conference (EUSIPCO), Rome, 2018, pp. 782-786, doi:
10.23919/EUSIPCO.2018.8552959.

[7] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina, "Network
Slicing in 5G: Survey and Challenges," in IEEE Communications
Magazine, vol. 55, no. 5, pp. 94-100, May 2017, doi:
10.1109/MCOM.2017.1600951.

[8] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J.
Lorca and J. Folgueira, "Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges," in IEEE Communications
Magazine, vol. 55, no. 5, pp. 80-87, May 2017, doi:
10.1109/MCOM.2017.1600935.

[9] P. Rost et al., "Network Slicing to Enable Scalability and Flexibility
in 5G Mobile Networks," in IEEE Communications Magazine, vol.
55, no. 5, pp. 72-79, May 2017, doi: 10.1109/MCOM.2017.1600920.

[10] "jFed – Java based framework to support SFA testbed federation
client tools". FED4FIRE+. https://www.fed4fire.eu/tools/jfed/
(accessed Dec. 10, 2020).

[11] Gomez-Miguelez, I., Garcia-Saavedra, A., Sutton, P. D., Serrano, P.,
Cano, C., & Leith, D. J. (2016). srsLTE: an open-source platform for
LTE evolution and experimentation. In Proceedings of the Tenth
ACM International Workshop on Wireless Network Testbeds,
Experimental Evaluation, and Characterization (pp. 25-32).

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 23,2022 at 14:57:38 UTC from IEEE Xplore. Restrictions apply.

		2021-12-01T10:40:35-0500
	Certified PDF 2 Signature

