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Abstract—The Domain Name Service (DNS) is a vital service
for the Internet. Much more than a simple translation mech-
anism, it also allows higher profile functionalities such as load
balancing and enhanced content distribution. In the scope of
cloud computing, DNS is foreseen as an elastic and robust service,
supporting failover mechanisms, decentralised configuration and
multi-tenant isolation.

This paper presents and validates a cloud-based architecture
for DNS as Service, considering the expected principles of
security, scalability and elasticity. The obtained results reveal
that the proposed architecture is capable of accommodating a
high-load of DNS queries per second by dynamically managing
the amount of used resources, enforcing a constraint of reduced
query latency (< 1s). Additionally, it also incorporates failover
monitoring mechanisms to ensure the stability of the system.
The performed assessment shows that this approach allows
for reduction of operational costs, managing used resources
according to the service’s needs by appropriately scaling in or out
DNS servers independently of the underlying cloud infrastructure
platform (e.g. OpenStack, Amazon Web Services).

Index Terms—DNSaaS, scaling, PowerDNS, on-demand instan-
tiation

I. INTRODUCTION

The Domain Name Service (DNS) is a vital service for the
Internet and dates back to the primordials of ARPAnet, for
name resolution purposes [1]. Since then, several extensions
have been provided to accommodate new functionalities, such
as security, load balancing and enhanced content distribu-
tion [2,3]. In addition, a hierarchical architecture has been
specified and deployed to support the ever increasing demand
for name resolution requests in the Internet.

The goal of reducing both Capital and Operational ex-
penditure costs (CAPEX and OPEX, respectively) has long
been pursued by Telcos and service providers. Evolving from
virtualised mainframes into recent developments on cloud
computing, supported by platforms such as OpenStack [4],
Amazon Web Services [5], Windows Azure [6] or Google
Cloud Services [7], services can now adapt more easily and
take advantage of available features and infrastructures, such
as parallel processing [8]. Bearing this flexibility in mind,
the adoption of both vertical and horizontal scaling practices
becomes increasingly more important when developing cloud-
based services. With the goal of supporting these scaling
practices, services resorting to cloud-computing orchestration
platforms, such as Heat [9] in OpenStack, are enabled with on-
demand elasticity but rely only on a restricted set of metrics
such as CPU load and memory usage.

Due to the myriad of applications where DNS plays an
important role (including the scope of private clouds), it
becomes necessary to adapt it to the cloud-based paradigm,
providing a configurable and multi-tenant environment capable
of supporting multiple requirements and applications [10].
Nonetheless, the hierarchical and distributed organisation of
common DNS infrastructures across multiple data-centres does
not necessarily meet typical cloud principles, such as elasticity.
This limitation motivates the definition of a new DNS as a
Service (DNSaaS) architecture, flexible, robust, configurable
and capable of meeting variable demand, by monitoring exist-
ing resources and triggering infrastructural changes whenever
required. Flexibility and elasticity are the main goals achieved
by this architecture, mostly by assuring its suitability for dif-
ferent cloud platforms, adopting common scaling practices for
cloud-based services while always considering the specificities
of the DNS service.

The contributions of this paper include the specification
and validation of a DNS as a Service architecture, tailored
for different cloud platforms and compliant with scaling prac-
tices of cloud-based services. In fact, the proposed DNSaaS
architecture does not rely on specific functionalities of cloud
platforms to support scalability (like the autoscaling features
from HEAT), using instead platform-agnostic mechanisms.
This work also presents the specification of key performance
indicators alongside with their thresholds and measurements
for each DNSaaS component, supporting constant perfor-
mance monitoring via standard monitoring systems, such as
Zabbix [11] and Graylog [12]. Additionally, the obtained
evaluation results demonstrate that the proposed architecture is
able to accommodate the high peak loads introduced by some
data and VoIP applications. This validation has been performed
using large-scale environments, such as iMinds virtual Wall2
and FuSeCo testbeds from Fed4Fire [13].

Following an analysis and overview of DNS and cloud-
related literature, in Section II, the definition and details of the
DNSaaS architecture are presented in Section III. Section IV
details the evaluation methodology, while Section V present
the obtained performance and validation results for the pro-
posed architecture, on Fed4Fire testbeds. Final thoughts and
conclusions are outlined in Section VI.

II. RELATED WORK

When dealing with scaling in the cloud, different approaches
can be followed. For instance, prediction techniques can be
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applied to determine, in advance, the amount of required
resources for future operations. One existing proposal is
PRESS [14], based on statistical learning algorithms to enable
dynamic adjustments that aim at minimising resource waste
and avoid Service Level Objects (SLOs) violations. Bearing
this in mind, PRESS uses several metrics such as CPU usage,
memory input/output (I/O) and network usage, being able
to efficiently handle available resources in large-scale cloud-
computing infrastructures. Another approach, BConf [15], also
resorts to prediction techniques to enable dynamic balancing
of multiple resources in cloud systems. Its main optimisation
goal addresses the response time guarantee, for which BConf
uses prediction algorithms and control mechanisms.

Reactive approaches for elasticity techniques, such as per-
forming horizontal or vertical scaling, may fail to minimise
costs due to SLO violations [16]. Taking this into account,
proposals like AutoFlex combine reactive and proactive mech-
anisms to enable elasticity of services in the cloud. Similarly to
PRESS, AutoFlex also relies on prediction mechanisms being
able to reduce the number SLO violations.

The functionalities provided by orchestration services for
scaling on cloud platforms, such as Heat [9] on OpenStack [4],
fall into a reactive approach where base metrics such as CPU
usage and memory I/O are monitored and scaling decisions
(horizontal or vertical) are performed relying on user defined
thresholds. Nonetheless, the support metrics are generic and
not necessarily representative of the performance of specific
services in the cloud, such as DNS.

An alternative resource management proposal, Anchor [17],
formulates optimisation by considering both Operator and the
Client sides, as opposed to common enhancement mechanisms
that consider only operator metrics, such as CPU usage [14].
Anchor uses deferred acceptance algorithms to resolve the
conflicts between client and operator interests.

A different perspective on scaling issues is provided by
RCM [18], assuming that several metrics need to be measured

when addressing scalability in large-scale infrastructures, such
as CPU, disk usage and inter-node network delay, among
others. RCM aims at reducing the data collection cost by
performing online compression of the measured metrics. How-
ever, despite the validation in real-monitored systems, no
insights are provided regarding strategies for the optimisation
of resources. Context-aware approaches are also employed to
allow monitoring of network traffic by relying on different
DNS classes, canonical, overloaded and unwanted [19,20], but
the optimisation of resources is disregarded as well.

DNS performance has been characterised in the litera-
ture [21]–[25] considering the performance of DNS authorita-
tive servers in the face of the load introduced by simultaneous
clients and the volume of performed DNS queries. Although
these studies identify the key performance indicators of tra-
ditional DNS services, they cannot be used to infer how the
hierarchical architecture of DNS can be adapted to support
the flexibility, elasticity and failover characteristics of cloud-
based services. Moreover, they do not include insights on
how the DNS record information can be managed to increase
availability of servers (e.g. email or web servers) [26].

While many studies on elasticity and scaling on cloud-based
services have been conducted, each individual service presents
its own challenges and requirements. The DNSaaS architecture
proposed in this paper includes support for cloud paradigms
such as elasticity, scalability and failover mechanisms, without
being tied to a specific cloud platform and with enough flex-
ibility for allowing the splitting of functionalities (backends
and frontends) in diverse data centres.

III. DOMAIN NAME SERVICE AS A SERVICE

This section describes the architecture and main features of
our DNSaaS platform.

A. DNSaaS Architecture

Following basic cloud principles, in addition to tenant iso-
lation and appropriate configuration mechanisms, the defined



DNSaaS architecture has been designed to be fault tolerant
and elastic. Moreover, in order to be scalable and cope with
different utilisation levels, horizontal scaling was considered.

For the proposed architecture, within a single datacenter,
two separate DNS Forwarders were used, being responsible for
receiving all the DNS requests as primary and secondary name
servers. This approach was foreseen not only as a mean to
avoid multiple endpoints to a single service, but also to allow
the failover approach of a typical DNS service, while also
being able to use the forwarders as internal load-balancers. By
having two dedicated endpoints for receiving DNS queries, the
proposed architecture is able to support multiple DNS servers,
whose IP addresses can be dynamically added or removed to
the Forwarders list of available servers for load balancing. This
aspect represents a crucial point in the architecture’s ability to
be elastic and react on-demand to increasing demands of load,
while also being able to reduce the amount of needed resources
whenever suitable.

Since the performance of the overall service is a major
priority, ensuring an appropriate use of the DNSaaS database is
crucial. However, due to the separation of the DNS service into
multiple DNS servers, challenges regarding the consistency of
records arise. For handling these issues, while always keeping
performance in mind, two separate architectures were consid-
ered. One with a centralised database, resorting to DataBase
as a Service solutions (such as Trove [27]), and another where
each DNS Server has its own database engine, being all
the databases consistent and synchronised in a master-slave
paradigm, where the master database is managed directly by
DNSaaS API, responsible for all the configurations of records.

A major concern from the bottleneck in the centralised
architecture, depicted in Figure 1, is that concurrent database
accesses may significantly increase latency, despite the in-
memory caching mechanisms by each DNS Server. On the
other hand, the decentralised approach, presented in Figure 2,
may suffer from synchronisation challenges when assuring
master-slave data replication.

B. DNSaaS Components

The different components depicted by both architectures
have their own specificities. For instance, in the centralised
approach, the DBaaS component serves as master database,
where all the DNS information is stored. It is also responsible
for keeping domains and records for all the different tenants.
In the architecture with distributed database this component is
also responsible for replicating the data to the other databases
in DNS Servers, acting as a master database. The slave
databases are used only for read operations and contain opti-
misations, as indexes for the most common access operations
(such as retrieving an IP for A records).

The DNS Server is the core component of the DNS ser-
vice, handling the domain-address conversion and supporting
geodns, among other possible DNS extensions. The instan-
tiation of typical DNSaaS architecture may begin with a
single DNS Server, but it is able scale according to the
registered needs, by considering a dynamic number of DNS
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servers. The optimal number of DNS servers may be found
by considering multiple criteria decision, resorting to simple
metrics such as latency or the ratio between successful and
unsuccessful queries, used to infer the performance of DNS
servers. Heuristic metrics and prediction algorithms may also
be applied, as previously discussed in the related work section.

The DNS Forwarder is the front-end of the service for a
client, being the main task of this component is to forward
DNS requests to an existing DNS server, using round-robin
fashion algorithm, or even by adopting more complex load-
balancing mechanisms.

The API acts as an endpoint for the configurator (or
enterprise end-user), allowing an authenticated and tenant-
based configuration of the DNSaaS service. This component
provides simple CRUD operations for domains and records,
keeping DBaaS updated according to the available services and
servers. This component is also responsible for maintaining
the available list of DNS Servers up-to-date, informing the
forwarders so they can distribute the load appropriately.

One of the design goals of the proposed DNSaaS includes
flexibility, allowing to distribute DNSaaS components in di-
verse cloud platforms that can be geographically distant from
each other, as demonstrated in the centralised and distributed
architectures, Figure 1 and Figure 2, respectively.

IV. EVALUATION METHODOLOGY

This section discusses the methodology we used to evaluate
the scaling performance of DNSaaS, presenting the evaluation
scenario and associated metrics. The validation has been
performed using iMinds vWall2 and FuSeCo testbeds from
Fed4Fire [13].

A. Scenario

The considered evaluation scenarios focus on the distributed
approach, since our preliminary validations results [28,29]



focused mainly on the centralised approach. Nonetheless, none
of the previous works included a large-scale evaluation, as the
one targeted in this paper (e.g. 12.5M DNS requests in a scale
of minutes). The scenario has been deployed in virtual vWall2
testbed, as depicted in Fig. 3.

The database nodes have been configured using MySQL
as validated in previous works as the database engine for
DNSaaS [28]. A Load Balancer (LB) has been introduced
to enable sharing the load between the database nodes and
is configured with HAProxy to enable an efficient, scalable
load sharing and tolerant to failures that is nodes with no
reachability or in down status are not employed.

For performance evaluation and validation purposes, a sin-
gle DNS Forwarder was used, as depicted in Fig. 3. This
option was considered to maintain the repeatability of the
scenarios’ conditions, avoiding unnecessary uncertainty fac-
tors from load-balancing mechanisms, focusing on the main
purpose of validating the architecture for scaling and assessing
the behaviour of the DNS Servers upon receiving a high-
load of queries requests. In this regard, a variable number
of DNS Servers (n servers) was considered, from one to
three (1, 3), all of them connected to the DNS Forwarder.
It is also important to consider that all the servers, including
the DNS Servers and the DNS Forwarders, were configured
to not perform any caching of DNS queries or answers,
guaranteeing an adequate evaluation on each run with the same
initial conditions and ensuring repeatability. This configuration
also allows to evaluate the service’s performance in a worst
case scenario. The number of DNS Forwarders can be easily
incremented using the proposed architecture, requiring only
the reconfiguration of DNS clients (with a new IP) and the
respective server (information of the DNS Servers to perform
load balancing). The DNS Forwarder considered two main
technical solutions, one based on PowerDNS Recursor [30]
and another one based on dnsdist [31], with the goal of
assessing different load balancing mechanisms between the
DNS Servers. In particular, dnsdist was configured with two
policies, the leastOutstanding which load requests to the DNS
Server with less load and the firstAvailable which employs a
load bellow a certain QPS threshold. In these experiments, this
threshold was configured with a value of 1250.

In order to create load on the DNS service, several clients
were employed, each one performing 500K DNS queries,
with diverse send rates of requests per second (sendRate =
{100, 250, 500, 1000}) to assess the impact of diverse types of
load in the DNSaaS. The clients read files with 500K records
and perform the DNS queries by using the dnsperf tool [32], a
synchronization mechanism has been implemented to manage
the parallel execution of requests from the diverse clients.
These queries are sequential and independently configured
according to the number of outstanding requests, which is
similar to the sendRate. Thus within this number each query
is sent immediately after the other without waiting for any
query reply, resulting in a burst of queries to the DNS servers.
The total number of clients (n clients) however, was varied
from a single client up to 25 concurrent clients (1, 3, 5, 25),

TABLE I: Configuration parameters

Test DNS Frontend Number
clients clients

1-8 1 recursor 1
type: wired

sendRate:{100,250,500,1000}
records:{A,NAPTR}

9-16 1 recursor 3
type: all

sendRate:{100,250,500,1000}
records:{A,NAPTR}

17-20 1 recursor 5
type: all

sendRate:{100,250,500,1000}
records:{A,NAPTR}

21-24 1 dnsdist least-
Outstanding 5

type: all
sendRate:{500,1000}
records:{A,NAPTR}

25-28 1 dnsdist
firstAvailable 5

type:all
sendRate:{500,1000}
records:{A,NAPTR}

29-36 1 recursor 1
type: wireless

sendRate:{100,250,500,1000}
records:{A,NAPTR}

37-40 1 recursor 25
type: all

sendRate:{500,1000}
records:{A,NAPTR}

41-44 1 recursor 25
type: all

sendRate:{500,1000}
records:{A,NAPTR}

45-48 1 dnsdist least-
Outstanding 25

type: all
sendRate:{500,1000}
records:{A,NAPTR}

leading to a different load in terms of DNS queries (
∑

DNS
queries). This approach, with a varying number of clients,
allows an assessment of the performance of the proposed
DNSaaS architecture under different levels of load, up to a
maximum of 12.5M DNS requests.

Given the variation possibilities of the different presented
parameters, multiple evaluation scenarios exist, providing a
thorough performance comparison of distinct DNSaaS con-
figurations. All the available evaluation combinations for the
possible tests are summarised in Table I. Tests consider both
types of applications. Data applications request information for
”A” records, while VoIP applications require the information
provided in ”NAPTR” record, which is required for successful
SIP signalling. Besides the type of record, the main difference
between data and VoIP applications relies in the configured
timeout for DNS replies. The former assumes a timeout of 5s,
while the last requires a timeout of 2s. The differences between
each test lie in the configured sendRate and/or the solution
used for the DNS Frontend. For instance, test 1 includes a
sendRate=100, while test22 includes a sendRate of 1000 and
uses the dnsdist solution.

The clients rely on pcgen3 nodes (CPU with 2.4GHz, 24GB
of RAM), while the servers rely on pcgen5 nodes (CPU with
3.1GHz, 16GB of RAM) of Virtual vWall2.

B. Performance Metrics

Having defined all the relevant evaluation scenarios, it is
necessary to determine appropriate performance metrics that
reflect the service’s response to different demands. These
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Fig. 4: QPS performance of Data Apps
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Fig. 5: Ratio of Successful requests of Data Apps
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Fig. 6: Ratio of intervals latency of Data Apps [25]

metrics concern the different components that compose the
DNSaaS architecture, assessing mainly the capacity of answer-
ing DNS queries in a timely fashion. The analysed metrics
include: the queries throughput (qps), as measured by each
client; the query loss ratio; and the query failure ratios, due
to loss of requests/replies or due to ServFail (requests not
answered by DNS Servers). The Query latency is considered
in five intervals [25] (in ms): < 200; [200, 500[; [500, 1000[;
[1000, 1500[ and > 1500. These metrics are collected in
graylog [12] without imposing additional overhead on the
DNSaaS components.

V. RESULTS

This section presents the obtained results during the val-
idation and performance assessment of the defined DNSaaS
architecture. These results are discussed based upon a 95%
confidence interval, of the average from the ten runs executed
for each test. This analysis focus mainly the perspective of
data and VoIP applications.

A. Data App Perspective

The results of the measure metrics for the data applications
are depicted in Figures 4, 5 and 6. The depicted results are
based on both types of clients (i.e. wireless and wired). With
lower sendRates (≤ 500), clients are able to have a throughput
similar to the sendRate. Nonetheless, with higher sendRates
(> 500) the achieved throughput is lower and is not close to
the maximum theoretical value. For instance, a single client
issuing requests at a rate of 1,000 requests per second is only
able to get a nominal performance around 665 QPS. Such fact
is associated with the full resolution process of DNSaaS, that
has an higher delay in these cases, with a measured qa-latency1

in the frontend higher than 1 second. This can be noticed with
the higher failure ratios for these test cases (see Fig. 5).

Another relevant aspect to analyse includes the simultaneous
load that is supported. Indeed, with more than 5 clients,
the achieved performance presents a high variation in the
perceived QPS, which never reaches the theoretical values.
The query loss ratio is higher in these cases, leading to 50%
of loss with 25 simultaneous clients issuing 1,000 requests per
second.

1Latency of query answers measured in the Frontend

B. VoIP App Perspective

The results of the measure metrics for the VoIP applications
are depicted in Figures 7, 8 and 9.

Besides the query loss ratios, the latency has also an high
impact in VoIP applications. The performance in terms of
achieved DNS requests throughput follows the same trends as
data apps. In particular, QPS is not similar to the sendRates
with high load (> 1, 000) and with a high number of requests
(5 * 500k = 2.5M ). With VoIP apps, the timeout relies in
values of 2s, leading to higher loss ratios (75%) in extreme
load cases (25 clients issuing 1,000 requests per second), in
comparison to data apps.

C. On-demand instantiation and disposal

The deployment of DNSaaS solution, include DNS For-
warder, DNS Servers and Database nodes relies in the order
of seconds (around 330s), when considering an OpenStack
Infrastructure and a platform based on OpenShift, as reported
in our previous work [29]. The disposal of resources (i.e.
virtual machines) also relies in the order of seconds (around
5s).

It is also relevant to mention, that the process of loading
the database nodes with the necessary information for DNS
resolution, relies in the order of minutes. Indeed, databases
were populated with millions of records, due to the use of 100
domains, having each one more than 500k records of type A
and 500k for NAPTR type.

VI. CONCLUSION

An elastic and scalable architecture for DNS as a Ser-
vice, suitable for cloud-based platforms, was presented and
validated. The provided assessment, obtained through exper-
imentation, demonstrated the employed scaling practices for
cloud-based services. The obtained results further proved the
proposed architecture’s elasticity and flexibility, which takes
into account the specificities of the DNS service while not
being tied to a particular cloud-computing platform.

Regarding the performance evaluation of the presented ar-
chitecture, it became clear that the service is able to accommo-
date variable loads of DNS queries per second, always keeping
satisfactory levels of performance in terms of DNS queries
throughput and low latency DNS answers. This performance
level was maintained by DNSaaS resorting to a horizontal
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scaling approach, instantiating additional resources whenever
required.
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