

Grant Agreement No.: 732638
Call: H2020-ICT-2016-2017

 Topic: ICT-13-2016
Type of action: RIA

D3.4: Developments for the
second cycle

Work package WP 3

Task Task 3.1-3.5

Due date 31/12/2019

Submission date 17/3/2020

Deliverable lead Imec

Version 3

Authors

Brecht Vermeulen (imec), Wim Van der Meerssche (imec), Thijs Walcarius
(imec), Albert (Yiu Quan) Su (SU), Dimitris Dechouniotis (NTUA), Costas
Papadakis (NTUA), Aris Dadoukis (CERTH), Donatos Stavropoulos (CERTH),
Ana Juan Ferrer (ATOS), Roman Sosa Gonzalez (ATOS), Ana Juan Ferrer
(ATOS), Rowshan Jahan Sathi (TUB), Alex Willner (TUB), Lucas Nussbaum
(Inria), David Margery (Inria), Cedric Crettaz (MI)

Reviewers Peter Van Daele (imec)

Abstract This deliverable gives an overview of the developments in WP3 during the
second 18 months of the project. WP2 are normal operations developments
(add testbeds, fix bugs, small features, etc). WP3 is focussing on larger new
functionality.

Keywords Developments second cycle, new functionality

Ref. Ares(2020)1683153 - 20/03/2020

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 2 of 91

Document Revision History

Version Date Description of change List of contributor(s)

V1 1/10/2019 TOC Brecht Vermeulen (imec)

V2 22/12/2019 First version Brecht Vermeulen (imec), Wim Van der Meerssche
(imec), Thijs Walcarius (imec), Albert (Yiu Quan) Su
(SU), Dimitris Dechouniotis (NTUA), Costas Papadakis
(NTUA), Aris Dadoukis (CERTH), Donatos
Stavropoulos (CERTH), Ana Juan Ferrer (ATOS),
Roman Sosa Gonzalez (ATOS), Joaquin Iranzo Yuste
(ATOS), Rowshan Jahan Sathi (TUB), Alex Willner
(TUB), Lucas Nussbaum (Inria), David Margery (Inria),
Cedric Crettaz (MI)

V3 10/03/2020 Final version Brecht Vermeulen (imec)

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
Federation for FIRE Plus (Fed4FIRE+); project’s consortium under EC grant agreement
732638 and do not necessarily reflect the views of the European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2017-2021 Fed4FIRE+ Consortium

ACKNOWLEDGMENT

This deliverable has been written in the context of a Horizon 2020 European research project,
which is co-funded by the European Commission and the Swiss State Secretariat for
Education, Research and Innovation. The opinions expressed and arguments employed do
not engage the supporting parties.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 3 of 91

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web ✓

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential to FED4FIRE+ project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 4 of 91

EXECUTIVE SUMMARY

This deliverable gives an overview of the developments in WP3 during the first 18 months of
the project. WP2 are normal operations developments (add testbeds, fix bugs, small features,
etc). WP3 is focussing on larger new functionality.

WP3 consists out of the following tasks, which are also the sequence of sections in this
deliverable:

• Task 3.1 is focussing on SLA and reputation for testbed usage

• Task 3.2 is focussing on Experiment-as-a-Service (EaaS), data retention and
reproducibility of experiments

• Task 3.3 is targeting Federation monitoring and interconnectivity

• Task 3.4 works on Service orchestration and brokering

• Task 3.5 researches ontologies for the federation of testbeds

• As described in D3.3, the following extra developments have been made based on
demands of users, tool developers and testbed owners:

o New user account portal with OAuth

o A tool (for the Fed4FIRE.eu website) to allow to more easily chose testbeds

o An automated setup for openstack with Fed4FIRE tools

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 5 of 91

TABLE OF CONTENTS

DISCLAIMER .. 2
COPYRIGHT NOTICE... 2
ACKNOWLEDGMENT .. 2

1 INTRODUCTION .. 11

2 NEW USER ACCOUNT PORTAL .. 12
2.1 USER FRIENDLINESS AND MORE CLEAR FLOW ...13
2.2 TERMS AND CONDITIONS AND PRIVACY ...15
2.3 NEW PROJECT REQUEST ..16
2.4 PROJECT APPROVAL ...17
2.5 PORTAL DASHBOARD AFTER APPROVAL...18
2.6 PER PROJECT FUNCTIONALITY ..19
2.7 DASHBOARD EXPERIMENT OVERVIEW ...20
2.8 ADMIN VIEW ...21
2.9 LOGGING FOR AUDITING ...21
2.10 OAUTH ..22

3 TESTBED CHOSER FOR FED4FIRE.EU WEBSITE 24

4 SLA AND REPUTATION SERVICE ... 27
4.1 REPUTATION DEVELOPMENTS FOR THE SECOND CYCLE27
4.2 SLA DEVELOPMENTS FOR THE SECOND CYCLE ..29
4.2.1 SLA Service workflow ...29
4.3 REQUIREMENTS COVERAGE ...31
4.4 TESTBEDS INTEGRATION WITH REPUTATION AND SLA SERVICE31
4.5 FUTURE WORK ..33

5 IMPROVING REPRODUCIBILITY OF EXPERIMENTS – EXPERIMENT-AS-A-
SERVICE .. 34
5.1 EXPERIMENT SPECIFICATION (ESPEC) ..34
5.2 LIGHTWEIGHT EXPERIMENT ORCHESTRATION TOOL (EXPO)35
5.2.1 About ExpO ..36
5.2.2 Installation ..36
5.2.3 Dependencies ..36
5.2.4 Usage ..36
5.2.5 The Experiment Orchestration Definition-file ..37

6 FEDERATION MONITORING .. 39
6.1 INTRODUCTION ...39
6.2 MORE DETAILED HISTORY OVERVIEW ..39
6.3 IMPROVED TEST REPORTS ...41
6.4 BUG FIXES ...43

7 INTERCONNECTIVITY .. 44
7.1 INTERCONNECTION OF CITYLAB TESTBED WITH EXOGENI44
7.2 LAYER 2 CONNECTIONS BETWEEN VIRTUAL WALL AND GRID500045
7.3 USING EXOGENI FLUKES WITH A FED4FIRE ACCOUNT FOR COMPLEX
CONNECTIVITY TO EXOGENI ..46

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 6 of 91

7.3.1 Overview ..46
7.3.2 Download the PEM credential file from the portal ...47
7.3.3 Flukes install and configuration ..47
7.3.4 Run Flukes and test ...48
7.3.5 Using Flukes ..48
7.3.6 Specific stitching to Fed4FIRE ...49
7.3.7 Fed4FIRE side ...49

8 SERVICE ORCHESTRATION (YOUREPM) .. 50
8.1 REQUIREMENTS COVERAGE ...50
8.2 ARCHITECTURE ..51
8.3 INSTALLATION MANUAL ..52
8.3.1 Configuration file ..53
8.4 FUTURE WORK ..54

9 AUTHENTICATION PROXY SERVICE .. 55
9.1 REQUIREMENTS COVERAGE ...55
9.2 ONLINE DOCUMENTATION ...56
9.3 INSTALLATION MANUAL ..57
9.3.1 Overview ..57
9.3.2 Debian specific instructions ..57
9.3.3 Configuration of the service ..58
9.3.4 Starting and checking the service ...61
9.3.5 Debugging tools ...61
9.3.6 End-user manual ..62
9.4 AS A PROXY USER ..63
9.4.1 Endpoint or testbed user manual ..63

10 CENTRAL BROKER .. 66
10.1 REQUIREMENTS COVERAGE ...66
10.2 ARCHITECTURE ..67
10.3 SEQUENCE DIAGRAMS ..68
10.4 USER MANUAL ..69
10.5 FUTURE WORK ..72

11 ONTOLOGIES .. 73
11.1 SEMANTIC BASED RESOURCE DESCRIPTION ..73
11.1.1 Deployment of the OMN Wireless Ontology ...73
11.1.2 Reasoning & Knowledge Inference on the OMN Ontology75
11.2 SEMANTIC AGGREGATE MANAGER ARCHITECTURE (SAM)77
11.2.1 ARCHITECTURE description ...77
11.2.2 Functional components ..77
11.3 SEMANTIC AWARE MANAGEMENT REQUIREMENTS ...81
11.3.1 Functional Requirements ...81
11.3.2 NON-Functional Requirements ..86
11.4 REFERENCES ..88

12 AUTOMATED OPENSTACK DEPLOYMENT .. 89

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 7 of 91

LIST OF FIGURES

FIGURE 1: NEW HTTPS://PORTAL.FED4FIRE.EU PORTAL ...12

FIGURE 2: USER FRIENDLY SIGN UP FORM AND EDUGAIN ACADEMIC LOGIN13

FIGURE 3: WHEN SELECTING ACADEMIC USER TYPE, IT IS SUGGESTED TO USE THE
EDUGAIN LOGIN ..14

FIGURE 4: EDUGAIN INSTITUTE CHOSER ...14

FIGURE 5: CLEAR OVERVIEW OF TERMS AND CONDITIONS AND PRIVACY POLICY 15

FIGURE 6: NEW PROJECT REQUEST FORM ASKING FOR WHICH TESTBEDS TO USE
AND HOW THEY HEARD ABOUT FED4FIRE ..16

FIGURE 7: FINAL STEP: APPROVING EMAIL CONFIRMATION AND WAITING FOR
ADMINISTRATOR APPROVAL ...17

FIGURE 8: DASHBOARD AFTER APPROVAL OF THE ACCOUNT18

FIGURE 9: DASHBOARD AFTER APPROVAL OF THE ACCOUNT19

FIGURE 10: DASHBOARD SHOWING EXPIRED AND RUNNING EXPERIMENTS20

FIGURE 11: ADMIN FUNCTIONALITY OF THE PORTAL ..21

FIGURE 12: LOGGING FOR AUDITING PURPOSES ...21

FIGURE 13: OAUTH LOGIN PROCEDURE FOR SERVICES. ..23

FIGURE 14: CURRENT TESTBED MAP WITH TECHNOLOGY LABELLING24

FIGURE 15: TESTBED SELECTION WITH EASY FILTERS ...25

FIGURE 16: HRS CREDIBILITY MECHANISM ...28

FIGURE 17: SLA SERVICE WORKFLOW ..30

FIGURE 18: ESPEC BUNDLES RSPEC, FILES TO BE UPLOADED AND SCRIPTS35

FIGURE 19: DETAILED STATISTICS ON UPTIME AND API AVAILABILITY FOR THE LAST
YEAR (PER TESTBED) ...40

FIGURE 20: OVERVIEW OF FEDMON TEST REPORT ..41

FIGURE 21: DETAILED STEPS OF A TEST REPORT ...42

FIGURE 22: INTERCONNECTION OF CITYLAB WITH EXOGENI VIA IMEC SDX44

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 8 of 91

FIGURE 23: VERIFICATION OF USABLE BANDWIDTH BETWEEN CITYLAB AND
EXOGENI ...45

FIGURE 24: 5 NEW VLANS BETWEEN GRID5000 AND VIRTUAL WALL45

FIGURE 25: MAP OF EXOGENI TESTBEDS ..46

FIGURE 26: EXOGENI FLUKES GUI WITH FED4FIRE ACCOUNT48

FIGURE 27: EXOGENI US VLANS IN JFED ...49

FIGURE 28: ARCHITECTURE ...51

FIGURE 29: DEPLOYMENT DIAGRAM ..52

FIGURE 43: SCREENSHOT OF A PAGE ALLOWING FED4FIRE USERS TO GET A CLIENT
CERTIFICATE ...62

FIGURE 31 : SCREENSHOT OF THE LIST OF PROXIES, WITH THE URL TO USE EACH
 ...63

FIGURE 45:SECURING THE LINK BETWEEN THE SERVICE AND AN ENDPOINT.........64

FIGURE 33: ARCHITECTURE ...67

FIGURE 34: SEQUENCE DIAGRAM ...69

FIGURE 35: CLASS RELATIONSHIPS STATS ..74

FIGURE 36: "ALIX01" WIRELESS NODE ...75

FIGURE 37: SEMANTIC AGGREGATE MANAGER ARCHITECTURE78

FIGURE 38: JFED OPEN ESPEC BUTTON AND DIRECT GIT ACCESS90

FIGURE 39: OPENSTACK SETUP..91

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 9 of 91

LIST OF TABLES

NO TABLE OF FIGURES ENTRIES FOUND.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 10 of 91

ABBREVIATIONS

FIRE Future Internet Research and Experimentation

JSON JavaScript Object Notation

SLA Service Level Agreement

SLO Service Level Objective

XML eXtensible Markup Language

WSAG Web Service-Agreement

API Application Programming Interface

XML-RPC: Extensible Markup Language Remote procedure call

REST REpresentational State Transfer

AM Aggregate Manager

QoS Quality of Service

QoE Quality of Experience

MVC Model-View-Controller

O/RM Object-relational mapping

GUI Graphical User Interface

CLI Command Line Interface

HRS Hybrid Reputation System

KPI Key Performance Indicator

FAHP Fuzzy Analytic Hierarchical Process

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 11 of 91

1 INTRODUCTION

This deliverable gives an overview of the developments in WP3 during the second 18 months
of the project. WP2 are normal operations developments (add testbeds, fix bugs, small
features, etc). WP3 is focussing on larger new functionality. D3.2 described the developments
during the first 18 months of the project.

WP3 consists out of the following tasks, which are also the sequence of sections in this
deliverable:

• Task 3.1 is focussing on SLA and reputation for testbed usage

• Task 3.2 is focussing on Experiment-as-a-Service (EaaS), data retention and
reproducibility of experiments

• Task 3.3 is targeting Federation monitoring and interconnectivity

• Task 3.4 works on Service orchestration and brokering

• Task 3.5 researches ontologies for the federation of testbeds

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 12 of 91

2 NEW USER ACCOUNT PORTAL

A new user portal for the user accounts and project registration has been brought online at
https://portal.fed4fire.eu.

Figure 1: New https://portal.fed4fire.eu portal

The main benefits from the new portal are the following:

• Better Fed4FIRE branding and look&feel (see above screenshot)

• More user friendly portal (e.g. to invite people to a project or for student classes)

• Better and more clear flow for approval of terms and conditions and GDPR terms

• Possibility to use edugain login for academics (=university home account)

• Extra information is gathered for the user accounts and is put in the user credential to
make it possible for testbeds to allow more fine-grained access

• Logging for auditing

• Better statistics are possible on the usage of the testbeds

• OAuth API to make it easy for other (web-based) services to use the same account
base

https://portal.fed4fire.eu/
https://portal.fed4fire.eu/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 13 of 91

2.1 USER FRIENDLINESS AND MORE CLEAR FLOW

When signing up for a new account, the new steps are now clearly shown at the top and it is
also clearly shown that you can use your academic login or create a local account. We do ask
also extra information on the user type (Student, Academic researcher, industrial researcher)
as this can make a difference for testbeds to accept experiments of these users (e.g. academic
research can use more resources than a student, industrial researches are limited in resource
use for free, etc.).

Figure 2: User friendly sign up form and edugain academic login

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 14 of 91

Figure 3: When selecting academic user type, it is suggested to use the edugain login

Figure 4: Edugain institute choser

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 15 of 91

2.2 TERMS AND CONDITIONS AND PRIVACY

The sign up sequence has now also a clear overview of the terms and conditions and privacy
policy. The Fed4FIRE terms and conditions can be found at https://fed4fire.eu/terms.

As Fed4FIRE is no legal entity at this moment, and this new portal runs in the imec datacentre,
the imec privacy policy is used (https://www.imec-int.com/en/privacy-statement).

Figure 5: Clear overview of terms and conditions and privacy policy

https://fed4fire.eu/terms
https://www.imec-int.com/en/privacy-statement

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 16 of 91

2.3 NEW PROJECT REQUEST

If people ask for a new project, we do ask extra information: which testbeds they want to use
(so we can inform the right testbed owners) and how they heard about Fed4FIRE. New projects
always need to be manually approved by a portal administrator. Even if the account comes
from an edugain institute, we still verify the project request manually.

Figure 6: New project request form asking for which testbeds to use and how they heard about
Fed4FIRE

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 17 of 91

2.4 PROJECT APPROVAL

As before, the approval process is the same. The imec administrators approve manually the
PIs/new project requests. After that, the PIs of the project are responsible for approving users
in their projects.

Figure 7: Final step: approving email confirmation and waiting for administrator approval

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 18 of 91

2.5 PORTAL DASHBOARD AFTER APPROVAL

The screenshot below shows the dashboard a user sees after login. It is a quick overview of
the projects the user is member off, the user profile, the last experiments and the possibility to
download the PEM certificate for use in other tools.

Figure 8: Dashboard after approval of the account

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 19 of 91

2.6 PER PROJECT FUNCTIONALITY

The dashboard per project shows the current members and their role (lead, admin, member)
and the number of experiments in that project.

It contains also an invite url to easily invite other users and it is possible to change this in an
auto-approval (random) url, e.g. for class exercises where you expect many students at once.

Figure 9: Dashboard after approval of the account

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 20 of 91

2.7 DASHBOARD EXPERIMENT OVERVIEW

In the below screenshot you can see how the user sees the list of expired and running
experiments and the following functionality is present:

• Possibility to download request and manifest rspec (to rerun an old experiment e.g.)

• Running experiments: possibility to open directly in jFed by clicking a button

• Easy filter, sort and search functionality

Figure 10: Dashboard showing expired and running experiments

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 21 of 91

2.8 ADMIN VIEW

The portal administrators have access to admin pages in the portal to view users, projects and
experiments.

Figure 11: Admin functionality of the portal

2.9 LOGGING FOR AUDITING

In this new portal, we also have better logging of all actions so we can use it for auditing
purposes. See the example below:

Figure 12: Logging for auditing purposes

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 22 of 91

2.10 OAUTH

An important feature of the portal is the OAuth functionality. OAuth is an open standard for
access delegation, commonly used as a way for Internet users to grant websites or applications
access to their information on other websites but without giving them the passwords.

Generally, OAuth provides to clients a "secure delegated access" to server resources on behalf
of a resource owner. It specifies a process for resource owners to authorize third-party access
to their server resources without sharing their credentials. Designed specifically to work with
Hypertext Transfer Protocol (HTTP), OAuth essentially allows access tokens to be issued to
third-party clients by an authorization server, with the approval of the resource owner. The third
party then uses the access token to access the protected resources hosted by the resource
server.

The OAuth functionality is useful for all kind of web-based services, e.g. also the SLA and
reputation service discussed later on.

Example of GPULab Jupyterhub: when you browse to the jupyterhub website, you can chose
the authority you want to use.

You are redirected to the login page of the authority:

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 23 of 91

And after login, you are asked if you allow Jupyterhub to receive the listed information:

Figure 13: OAuth login procedure for services.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 24 of 91

3 TESTBED CHOSER FOR FED4FIRE.EU WEBSITE

When people come to Fed4FIRE and try to find the right testbed for their experiment, or want
to check if they can use Fed4FIRE for their experimentation, they use now
https://www.fed4fire.eu/testbeds/.

This consists of a map with color-coded testbed labels, based on 7 testbed types (wired,
wireless, 5G, IoT, openflow, cloud, big data). Further on, each testbed has a more detailed
description with a link to a specific documentation website and contact email.

Figure 14: Current testbed map with technology labelling

However, this is too limited for some visitors/possible users. If you are looking e.g. for GPUs
or for LTE or for IoT IPv6, you have to basically run through too many testbed descriptions.

Based on this simple question, it seems that ontologies could answer this, but then you need
a detailed ontology for all testbeds and the queries need to be quite detailed. So we have set
up something in between: not too complex to set up and maintain (adapt to user questions),
helps users, and only needed for the website for now.

https://www.fed4fire.eu/testbeds/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 25 of 91

We have come up with the below web-based tool, based on filters and search. So, now you
can easily combine multiple filters and look at a basic decription and have e.g. extra info about
size and maturity of the testbed.

Figure 15: Testbed selection with easy filters

The input for this filter system is a very simple and easy (in comparison to e.g. ontologies) to
maintain json description:

[

 {

 "name": "Virtual Wall",

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 26 of 91

 "country": "belgium",

 "categories": [

 "wired",

 "cloud",

 "bigdata",

 "ai",

 "gpu"

],

 "technologies": [

 "10gb",

 "1gb",

 "openflow",

 "sdn"

],

 "size": "500plus",

 "maturity": "10plus",

 "properties": ["long_running_experiments",

 "ipv6",

 "international_l2"]

The next steps for bringing this into production on the Fed4FIRE website:

• Add all testbeds and the relevant features

• Chose the right filters

• Make a wordpress plugin of this, so it can be used in the wordpress Fed4FIRE website

• Look and feel adapted for the website

This is planned for Q1-Q2 2020.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 27 of 91

4 SLA AND REPUTATION SERVICE

In the Fed4FIRE+ environment, the Service Level Agreement (SLA) and the Reputation
Service provide the necessary tools and mechanisms for delivering to the users a quantitative
view of the trustworthiness of the federated testbeds. This service facilitates the Fed4FIRE+
users to select the appropriate testbeds in the federation according to their experiment’s
requirements and the testbeds provide SLA on specific QoS metrics.

The aim of adding SLA within Fed4FIRE+ is to enable testbed providers to create offerings
that experimenters can accept establishing an agreement with the testbed owner. We can
understand the agreement as a contract between the platform providers and the testbed users.
Once the agreement has been created, it must be verified that it is being fulfilled. The
information related to the execution of an experiment, i.e., if there is an agreement violation,
will be send to the other components using a notification / subscription pattern.

The Reputation Service of Fed4FIRE+ aims to enhance and extend the already-developed
reputation service of Fed4Fire project. The updated service will leverage Quality of Service
(QoS) metrics, such as Availability, Latency etc., Quality of Experience (QoE) metrics, e.g.,
Usability and Documentation Readability, and SLA data in order to compute the degree of
confidence of both experimenters and testbed. At the end of an experiment, the users will be
prompted to give their feedback for the reserved testbeds in order to update the reputation
score of the testbed and the credibility score of the experimenter. This process mitigates the
effect of abnormal or malicious evaluations and guarantees that the testbeds’ reputation score
is fairly computed.

During the first cycle, the SLA and reputation services were developed. At the second cycle,
these services will be continuously updated and will be integrated with the core testbeds of the
federation.

4.1 REPUTATION DEVELOPMENTS FOR THE SECOND CYCLE

During the first cycle, the testing and execution of the experiment evaluation lifecycle was
conducted through REST API calls with the Reputation Service frontend tools. One of the key
features of the HRS is the credibility mechanism which allows the Reputation Service to reduce
the impact of malicious users in the computation of the reputation score of each testbed.
Through the testing phase, the credibility mechanism was considered inadequate in some
cases. In particular, when the monitoring data value was below the SLA constraints, if the
user’s rating was far below the monitoring data, the credibility value was modified and in some
case heightened irrationally, since the SLA agreement was breached, and the user has every
right to be negative about the testbed’s performance. Such misconceptions of the original

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 28 of 91

credibility algorithm were corrected, and the following new credibility algorithm was developed
and replaced the previous one in HRS:

Figure 16: HRS Credibility Mechanism

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 29 of 91

The second update refers to the normalization of some QoS KPIs for the computation of the
credibility score of the experimenter. Some metrics, such as response time, cannot be
normalized, because there is no maximum value. In that case, for the inputs of the credibility
mechanism we utilize the SLA violations to define an alternative KPI, which actually measures
the fragment of time interval where no violation occurs, with the following formula,

1 −
𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝐾𝑃𝐼 =
) 100.

4.2 SLA DEVELOPMENTS FOR THE SECOND CYCLE

The objective of the Fed4FIRE+ SLA Service is to provide the capability to testbed providers
to offer QoS guarantees of their infrastructure to experimenters. The idea is that every time an
experimenter initiates an experiment, an agreement is established between the testbed
provider and the experimenter – in general, stating the total availability of the infrastructure
during the total duration of the experiments.

The requirements for the development of this second cycle were already presented on
deliverable D3.03 – Requirements and specifications for the second cycle, which are also
summarized in Requirements coverage below.

The list of developments during the second cycle is:

• Development of assessment periods per agreement, overriding the platform
assessment period (by default, one minute). The two additional assessment periods
are periodic assessment (means that the agreement can be evaluated each given
amount of time, e.g. 10 minutes, useful for detecting violations and proposing
reactions); and assessment at the end, when the experiment has concluded (this is the
assessment expected to be adopted by all testbeds). Both approaches were tested on
NITOS and NETMODE testbeds;

• Violations now include information about the failing node, which provides additional
information to Reputation component;

• Integration with NITOS and NETMODE testbeds tested;

• Design and start of development and integration of SLA lifecycle with jFed;

• Development of dashboard and collector.

4.2.1 SLA Service workflow

The sequence diagram below shows the involved workflow with regards to the SLA service
when a user reserves an experiment. It starts when a user decides to reserve infrastructure in
one of the Fed4FIRE+ testbeds. According to the user’s needs, a number of testbeds can be
available. Besides to the infrastructure, the testbed offers guarantees for their resources (in
principle, resources availability during the experiment, but additional metrics could be added).
These guarantees are stored in a document called SLA Template, which can be viewed by the
user.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 30 of 91

Figure 17: SLA Service Workflow

When the user selects a testbed and reserves the experiment, an agreement between the user
and the testbed is created automatically by the system. This agreement, depending on the
guarantees, is evaluated during the experiment or when the experiment ends. For example,
the availability is evaluated after the experiment expiration.

A new requirement has been identified during the discussions to integrate the Reputation and
SLA services in other testbeds. Users can extend the duration of an experiment; as such, when
this happens, the federation tools must send a signal to the SLA Service in the testbed to also
extend the duration of the agreement.

As a future requirement, we have identified that the SLA Service may provide alarms to the
user and testbed in case one of the guarantees could not be fulfilled. For example, in the case
of availability, if the availability in a period of 1 hour is lower than 98%, we can consider that a
global 99% is compromised, and send an alarm in case this situation is detected.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 31 of 91

4.3 REQUIREMENTS COVERAGE

The requirements of the Reputation and SLA Service are already recorded in D3.3 and
presented in the table below, which provides an explanation on the maturity achieved during
the second cycle and the next steps for the third cycle. The requirements highlighted in green
can be considered as completed.

ID Title Coverage in Second cycle

SLA_01 SLA solution must cover the whole
lifecycle specified in WS-Agreement

An initial workflow for the whole
lifecycle has been proposed. After
discussing with testbed owners, an
improved workflow has come out,
which will be developed in the third
cycle.

SLA_02 SLA solution Subscription mechanism Delayed to 3rd cycle

SLA_03 SLA Dashboard Dashboard implemented. Pending
integration with federation tools.

SLA_04 Agreement creation and enactment

SLA_05 Include node information in violation

REP_01 Reputation Service access to monitoring
and SLA data

An initial unified solution is discussed
using the new federation portal. An
early integration of Imec’s testbeds is
ongoing.

4.4 TESTBEDS INTEGRATION WITH REPUTATION AND SLA SERVICE

The core testbeds of the federation must be integrated with the Reputation and SLA service.
Towards this direction, NTUA and ATOS partners documented and provided specific
instructions for the integration. An experiment is uniquely defined by the slice URN, its starting
and ending time and the involving testbeds. This information must be sent to the service’s
components in order to assess any SLA violations and update the reputation score of each
involved testbed. This can be done in a unified way, in the new portal of the federation.
Through this portal, SLA agreements will be conducted, and the experimenters will rate the
conducted experiments. Then, the SLA and Reputation Service receive the information and
requests for the agreements and the ratings respectively, the services will request the
monitoring data from the testbeds involved in the experiment based on the unique slice URN.

For the computation of the reputation score of a testbed, no previous installation on the testbed
is required. The only requirement is that the testbeds expose a monitoring data API for the

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 32 of 91

procedure mentioned above. After the completion of the experiment, the user is prompt to
evaluate all the involved testbeds and provide the ranking for the QoS and QoE metrics. After
the experimenter rates the QoS and QoE metrics through the portal’s GUI, the portal will send
as a JSON POST request to the reputation service the user’s evaluation. The JSON body
section referring to the users evaluation will have the following format.

 "user_eval":[{"Usability":"very high", "Sup Satisfaction":"very high", "Doc Readability":"very
high", "Operability":"very high","Availability":100, "Response":87},{"Usability":"very high", "Sup
Satisfaction":"very high", "Doc Readability":"very high", "Operability":"very
high","Availability":100, "Response":55}]

The above example contains two evaluations, since the experiment used resources from two
testbeds and the experimenter must rate each involving experiment.

The Reputation Engine will compute the new values of the testbed’s reputation and the user’s
credibility using the evaluation received from the federation’s portal and the monitoring data it
will request sequentially from the involved testbeds APIs. The updated testbed’s reputation
score will be available on the portal and combined with the definitions of the KPIs in order to
facilitate future experimenters on the resource selection and compare different testbeds based
on their performance on specific metrics.

The integration of a testbed with the SLA service requires initially the installation of the SLA
management module. This component includes several subcomponents, such as the
Repository and the Assessment modules, that are responsible for maintaining the information
about the agreements, the penalties, the violations and the templates and for assessing the
QoS performance of the service based on specific KPIs. The SLA management module will
collect the monitoring data either periodically or aggregated at the end of the experiment in
order to assess the provided service from the monitoring data with the exact same process
described previously. The only difference is the intervals of the monitoring data requests.

Imec partner works on providing the monitoring API for all Imec Testbeds, in order to begin the
interconnection of the service with the core testbeds. Also, Imec will update of the portal front-
end and back-end in order to expose to the experimenters reputation and SLA values to the
experimenters and also connect both services with the portal and allow the users to use SLA
agreements and rate the resources chosen for their experiment.

The above procedure and the testing of the new developments will be the guideline for the
easy and smooth interconnection of the rest core testbeds with the SLA and Reputation
Service.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 33 of 91

4.5 FUTURE WORK

The following steps of the Reputation and SLA service can be summarized as follows.

• The completion of the development and deployment of the monitoring data APIs of all
core testbeds. The, the interconnection with the Reputation and SLA service will
follow.

• Installation of SLA Manager component in Imec (and other) testbeds. Integration of
jFed and SLA system, allowing a user to consult SLA of testbeds and create resources
with an associated SLA. Adaptations in SLA dashboard and SLA collector components
are expected as part of this integration.

• Implementation of the subscription mechanism, which has been deferred to 3rd cycle.

• Development of the warnings concept: measures of resources availability over a short
period of time (e.g. 1 hour) that can be used as a warning for the testbed provider and
the experimenter that the agreement may not be fulfilled.

• Implement the renegotiation concept, which corresponds to extending the expiration
time of the agreement when an experimenter extends the duration of an experiment.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 34 of 91

5 IMPROVING REPRODUCIBILITY OF EXPERIMENTS –
EXPERIMENT-AS-A-SERVICE

5.1 EXPERIMENT SPECIFICATION (ESPEC)

The Experiment Specification (ESpec) was developed as a new standard for setting up
experiments. It combines various existing industry standards and leverages them to make it
easier to fully setup an experiment: from requesting and provisioning the necessary testbed
resources to installing software, doing the configuration management and the application
deployment. This is also documented towards the users at https://jfed.ilabt.imec.be/espec .

In this way, the ESpec can be used as a base for creating “Experiments-as-a-Service”, where
we provide experimenters with fully automated experiments that provide an excellent starting
point for doing their scientific research or education activities. See e.g. 12 automated
openstack deployment in this deliverable and other examples in D3.2.

The functionality of this ESpec can also be leveraged to automate continuous testing of the
Fed4FIRE+ testbed resources, and the software platforms which have been developed on it.
This allows the developers of these platform to detect breaking changes from the moment they
happen, which greatly simplifies debugging and decreases the effort needed to sustain these
platforms.

The Experiment Specification is not a replacement for the Resource Specification (RSpec)
format. Instead, it acts as a bundle (see Figure 18) for an RSpec – which defines the testbed
resources that are needed for the experiment – with additional files for the software deployment
and configuration. For that second part, we use Ansible: a widely used open source software
that automates software provisioning, configuration management and application deployment.
As Ansible connects via SSH to the servers it controls and doesn’t need an “agent” to be
present on these servers, it is a natural fit for controlling Fed4FIRE+ testbed servers.

The ESpec also provides the necessary glue to make Ansible work: it can generate the
necessary configuration files for Ansible, like the inventory-file and an SSH private key for
accessing the other servers, and upload them to the Ansible master-node.

For more details about the ESpec, see D3.2 and https://jfed.ilabt.imec.be/espec.

In this cycle the ESpec was extended with some smaller features based on user requests (e.g.
possibility to use branches in the git dialog box) and bug fixes (e.g. ESpec in jFed didn’t use
correctly ssh proxy for some testbeds). And it was used for the Openstack deployment example
discussed later on in this deliverable.

https://jfed.ilabt.imec.be/espec
https://jfed.ilabt.imec.be/espec

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 35 of 91

Figure 18: ESpec bundles RSpec, files to be uploaded and scripts

5.2 LIGHTWEIGHT EXPERIMENT ORCHESTRATION TOOL (EXPO)

The ESpec discussed in the previous section helps in provisioning an experiment, but is not
meant/usable for the experimentation orchestration itself.

In Fed4FIRE we had OMF1
(https://www.rubydoc.info/github/mytestbed/omf/file/README.mkd) as an experiment
orchestration tool, but it is currently not supported anymore (e.g. the original website does not
respond for the last couple of years: http://omf.mytestbed.net/projects/omf/wiki/Introduction.

However, there is a demand for an experiment orchestration tool, especially for wireless
experiments at scale. Experimenters want to be able to turn on and off things, change
parameters at fixed times, for a large number of nodes.

That’s the reason we started the development of a lightweight tool ExpO (Experiment
Orchestrator) to help in experiment orchestration. Lightweight means that it only contains the
minimal features and a minimal number of components, so it’s very simple to install and use.

Documentation and code can be found at https://gitlab.ilabt.imec.be/ilabt/expo

1 Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan Seskar. 2010. OMF: a control and
management framework for networking testbeds. SIGOPS Oper. Syst. Rev. 43, 4 (January 2010), 54–
59. DOI:https://doi.org/10.1145/1713254.1713267

https://www.rubydoc.info/github/mytestbed/omf/file/README.mkd
http://omf.mytestbed.net/projects/omf/wiki/Introduction
https://gitlab.ilabt.imec.be/ilabt/expo

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 36 of 91

5.2.1 About ExpO

ExpO is short for "Experiment Orchstrator". It allows you to run time-sensitive experiments

over multiple machines.

ExpO consists out of two pieces of software:

• the ExpO slave which is present on all machines participating in the experiment,

waiting for instructions on when to execute commands

• the ExpO director which executes experiments defined in an Experiment
Orchestration definition

5.2.2 Installation

pip install git+https://gitlab.ilabt.imec.be/ilabt/expo.git

for ubuntu18:

apt-get update

apt-get install python3-pip

pip3 install git+https://gitlab.ilabt.imec.be/ilabt/expo.git

5.2.3 Dependencies

ExpO requires Python 3.6 or higher.

ExpO uses MQTT to communicate between the Director and the Slaves. The MQTT-server is

typically installed on the same server as the Director. We recommend Eclipse Mosquitto as

MQTT-server

apt-get install mosquitto

5.2.4 Usage

5.2.4.1 Slave

An ExpO slave must be present on each machine that takes part in the experiment

expo-slave -b <broker-url>

5.2.4.2 Director

To start an experiment, specify an experiment_id and the Experiment Orchestrator
definition-file:

expo-director start <experiment_id> < my-expo-definition.yaml

https://mosquitto.org/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 37 of 91

The director will first verify that all defined nodes are online. It will then configure them to

register themselves in the correct groups. Once all nodes are correctly configured, it will start

executing the commands.

5.2.5 The Experiment Orchestration Definition-file

The Experiment Orchestration Definition is a YAML based file.

Example:

version: 1.0

nodes:

 node1: [groupA]

 node2: groupB

 node3:

 - groupA

 - groupB

 node4

commands:

 - command: "iperf -s"

 groups: [groupA]

 - after: 10

 id: iperf_client

 command: "iperf -c server"

 groups: [groupB]

 - command: echo "Hello $EXAMPLE_NAME"

 args:

 chdir: /tmp

 environment:

 EXAMPLE_NAME: 'World'

 nodes: node4

TIP: YAML has some powerful features like Anchors and Aliases, which allows you to

reference values defined elsewhere in the file. You can use these to enrich your definition file.

5.2.5.1 The file format

version Currently always 1.0

nodes List of nodes expected in the experiment. Optionally you can specify to which groups

the node belongs in this experiment

commands: List of commands to be executed

5.2.5.2 Command format

command: the command to execute

https://yaml.org/spec/1.2/spec.html#id2765878

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 38 of 91

after: number of seconds after the previous command that this command must be executed

(optional, if omitted, it will be executed immediately after the previous command)

groups: the groups which must execute the command (optional if nodes has been specified)

nodes: the nodes which must execute the command (optional if groups has been specified)

id: a custom ID to identify MQTT-messages which relate to this command, such as the result,

stdout, stderr, stdin (optional, if omitted, the index of this command in the commands-list is used

as an id)

stderr: whether to stream the stderr as MQTT-messages with topic

expo/<experiment_id>/node/<node_id>/cmd/<command_id>/stderr (defaults to True)

stdout: whether to stream the stdout as MQTT-messages

expo/<experiment_id>/node/<node_id>/cmd/<command_id>/stdout (defaults to False)

stdin: whether to stream data sent to MQTT topic

expo/<experiment_id>/node/<node_id>/cmd/<command_id>/stdin or

expo/<experiment_id>/group/<group_id>/cmd/<command_id>/stdin to the stdin of the

process (defaults to False)

Warning: the order in which data is streamed to the stdin of a process is indeterminate when

mixing both topics

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 39 of 91

6 FEDERATION MONITORING

6.1 INTRODUCTION

Because the federation of testbed is a ‘loose’ federation (there is no single entity controlling all
testbeds), continuous monitoring of the testbeds is key. In that way, both the testbed operators
can be warned if something goes wrong and the experimenters can have an overview of which
testbeds are okay to use. D3.2 has an extensive overview of the Federation Monitoring 2.0
that was put in place for cycle 1: https://fedmon.fed4fire.eu.

6.2 MORE DETAILED HISTORY OVERVIEW

We had already an overview of the last year for login tests and the API status, but now we
added also percentages and the number of tests, so we have a clear view per testbed on the
availability. We added also the absolute numbers, because the login tests only twice a day, so
one failed test in a week has an impact of 7%.

https://fedmon.fed4fire.eu/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 40 of 91

Figure 19: Detailed statistics on uptime and API availability for the last year (per testbed)

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 41 of 91

6.3 IMPROVED TEST REPORTS

The test reports have been improved to give a better overview, see some examples below.

Figure 20: Overview of Fedmon test report

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 42 of 91

Figure 21: Detailed steps of a test report

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 43 of 91

6.4 BUG FIXES

Apart from the above, a number of small improvements and fixes have been done as well for
the Fedmon system.

• Bugfixes related to ESpec and to multi-slice tests

• Included ESpec logs to test output

• Improved testbed ping test robustness and feedback

• Reuse fedmon slice names to put less burden on the systems (especially the authority)

• Improved GPULab test

• Showing intermediate results of expired tests

• Fixed health calculation bug

• Increased the storage time of the fedmon tests, so we can have statistics over longer
time

• Upgraded to java 11

• Fix for Fedmon false mails

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 44 of 91

7 INTERCONNECTIVITY

Based on demand of experimenters we have extended the international connectivity in three
ways.

7.1 INTERCONNECTION OF CITYLAB TESTBED WITH EXOGENI

For an experiment, there was need for a quick setup of a layer 2 connection between the
Citylab testbed in Antwerp and exogeni in Amsterdam. We used the existing Software Defined
eXchange (SDX) at imec Gent to make this connection as can be seen below. The GRE tunnel
runs over the public research network, but both Citylab and the SDX in Gent are connected to
Belnet (Belgian NREN) with 10Gb/s links, so this is not a bottleneck.

We verified also the usable bandwidth (Figure 23) and we see that the link between Amsterdam
and Gent has a perfect throughput (930Mb/s without TCP/IP headers), while the link between
Gent and Antwerp only delivers about 830Mb/s at its maximum (4 parallel TCP connections).
It seems that this bottleneck is caused by the (light) hardware of the wireless nodes at Antwerp,
but of course this is more than enough compared to the wireless bandwidth needed for the
experiment.

Figure 22: Interconnection of Citylab with Exogeni via imec SDX

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 45 of 91

Figure 23: Verification of usable bandwidth between Citylab and exogeni

7.2 LAYER 2 CONNECTIONS BETWEEN VIRTUAL WALL AND GRID5000

During this 2nd cycle we have also enabled and debugged 5 vlans between Grid5000 and the
Virtual wall testbed. These are available in jFed as external networks. The goal is to make
these also available through the Grid5000 federated testbed.

Figure 24: 5 new vlans between Grid5000 and Virtual Wall

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 46 of 91

7.3 USING EXOGENI FLUKES WITH A FED4FIRE ACCOUNT FOR
COMPLEX CONNECTIVITY TO EXOGENI

7.3.1 Overview

The Exogeni testbeds (see Figure 25) can be used in two different ways:

• Through the standard GENI AM API (the API that we also use in Fed4FIRE) and with
standard GENI/Fed4FIRE stitching

• Through a proprietary API, via the Exogeni Flukes tool
(http://www.exogeni.net/2015/09/exogeni-getting-started-tutorial/)

Most of the default functionality (for cloud experiments, etc) can be done through the GENI AM
API (and thus be used via jFed).

However, very complex network connectivity between the Exogeni testbeds is only available
through the proprietary API and the Exogeni Flukes tool. To give an example: automated
stitching between the Virtual Wall and Exogeni Amsterdam can be done through
GENI/Fed4FIRE stitching with jFed. But for an ongoing experiment we needed direct layer 2
connectivity from the imec SDX in Gent to the US. Vlans were setup by the exogeni people
from the US to Amsterdam and with half-way stitching we can now set up the part in Europe
with jFed, and the US part with the Flukes tool. But together with the Exogeni people we made
it possible to use a Fed4FIRE account for this.

This means that for the complex connectivity you need two different tools, but only a single
account.

Figure 25: Map of Exogeni testbeds

http://www.exogeni.net/2015/09/exogeni-getting-started-tutorial/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 47 of 91

7.3.2 Download the PEM credential file from the portal

Download the PEM file from the Fed4FIRE portal (bottom of the dashboard after you login):

7.3.3 Flukes install and configuration

Follow http://www.exogeni.net/2015/09/exogeni-getting-started-tutorial/, from install/configure
flukes.

It is possible you need to add an exception to the java security list, where you add http://geni-
images.renci.org

.flukes.properties file (point certfile and certkeyfile to the downloaded pem file, ssh keys should
also point to local files):

orca.xmlrpc.url=https://geni.renci.org:11443/orca/xmlrpc

user.certfile=k:/flukes/login_ilabt_imec_be_bvermeul@ugent.be.pem

user.certkeyfile=k:/flukes/login_ilabt_imec_be_bvermeul@ugent.be.pem

enable.modify=true

ssh.key=~/.ssh/id_dsa

SSH Public key to install into VM instances

ssh.pubkey=~/.ssh/id_dsa.pub

Secondary login (works with ssh.other.pubkey)

ssh.other.login=bvermeul

Secondary public SSH keys

ssh.other.pubkey=~/.ssh/id_dsa.pub

Should the secondary account have sudo privileges

ssh.other.sudo=yes

Path to XTerm executable on your system

xterm.path=/opt/X11/bin/xterm

copy this .flukes.properties to your homedir (e.g. c:\users\administrator on windows)

http://www.exogeni.net/2015/09/exogeni-getting-started-tutorial/
http://geni-images.renci.org/
http://geni-images.renci.org/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 48 of 91

7.3.4 Run Flukes and test

Javaws flukes.jnlp

To test the account, click exogeni info, available resources. It will ask the password of the pem
file, but it’s just empty, click ok. It can take some time but should not give an error, but the
below screen:

Figure 26: Exogeni Flukes GUI with Fed4FIRE account

7.3.5 Using Flukes

See further at http://www.exogeni.net/2015/09/exogeni-getting-started-tutorial/

http://www.exogeni.net/2015/09/exogeni-getting-started-tutorial/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 49 of 91

7.3.6 Specific stitching to Fed4FIRE

Put a stitchport in your layout, with the following info:

Port URL: http://geni-orca.renci.org/owl/uvanlNet.rdf#Uva-
nlNet/Force10/S4810/TenGigabitEthernet/0/2/ethernet

Label/tag (vlan number): 1065 (valid 1065-1069)

7.3.7 Fed4FIRE side

Put a dedicated external network connection in your layout and chose US Exogeni 1065-1069.

Figure 27: Exogeni US vlans in jFed

http://geni-orca.renci.org/owl/uvanlNet.rdf#Uva-nlNet/Force10/S4810/TenGigabitEthernet/0/2/ethernet
http://geni-orca.renci.org/owl/uvanlNet.rdf#Uva-nlNet/Force10/S4810/TenGigabitEthernet/0/2/ethernet

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 50 of 91

8 SERVICE ORCHESTRATION (YOUREPM)

The objective of the Fed4FIRE+ YourEPM is to provide a tool that allows experimenters to
design and execute business processes modeled in BPMN, so experimenters can design
cross-testbed processes or execute 3rd parties’ services. For a complete description of the
orchestration solution, refer to D3.1.

The requirements for the development of this second cycle were presented on deliverable D3.3
– Requirements and specifications for the second cycle, which are also summarized in
Requirements coverage below.

The list of developments during the second cycle is:

• Integrated version with latest improvements, including enhanced multitenancy;

• Support for F4F OAuth2 authentication, instead of a certificate-based mechanism.
Regular and admin users are supported. Additionally, we defined a super admin user,
capable of reviewing all defined workflows in the platform.

• YourEPM has been installed in the federation.

8.1 REQUIREMENTS COVERAGE

The requirements defined for the component are presented in the table below, which provides
an explanation on the maturity achieved during the second cycle and the next steps for the
third cycle. The requirements highlighted in green can be considered complete.

ID Title Coverage in Second cycle

YourEPM-03 Assistant in the selection of the
exposed services.

Work in progress

YourEPM-08 Integration with the authentication
and authorization of Fed4FIRE+

YourEPM authorizes user by using
OAuth2 service

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 51 of 91

8.2 ARCHITECTURE

Figure 28: Architecture

The architecture of YourEPM, already presented in D3.1, is shown in Figure 28. It is composed
of a Frontend layer (with a set of UIs and REST APIs) and a Backend layer, which contains
business logic modules and the database.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 52 of 91

8.3 INSTALLATION MANUAL

Figure 29: Deployment diagram

Figure 29 shows the deployment diagram of the YourEPM component. The component itself
is composed of several WAR files served with a Jetty server. An nginx running in front of Jetty
serves HTTP(S). YourEPM uses a MySQL or MariaDB Database server for storage. YourEPM
delegates authentication and authorization to iMinds Authority server.

The SW prerequisites to install YourEPM are the following:

• Java 8+

• Mysql 5.5+ / MariaDB 10.3

• nginx

The following instructions have been tested on a Debian 10.1, but instructions on any
distribution with systemd should be similar.

1. Build the distributable package (this can be done on development machine or on target
server)

git clone https://gitlab.atosresearch.eu/ari/Fed4FIREPlus_YourEPM.git
cd workflow-engine
bin/bootstrap.sh
cd ../dist
bin/make-dist.sh

https://gitlab.atosresearch.eu/ari/Fed4FIREPlus_YourEPM.git

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 53 of 91

The distributable package is now in dist/target. If built on development machine, zip
that folder, upload to the server and unzip. From now on, DIST=<target of distributable
package on server>

2. Configure $DIST/etc/env.sh
The file has sensible defaults and you probably only need to set the OAuth password
of the YourEPM application.

3. Configure database and users.

mysql -h localhost -u root -p < $DIST/share/database.sql

4. Create “yourepm” user to run the Workflow-Engine service.

adduser yourbpm

5. Configure the workflow-engine service in systemd. The service will run as the user just
created.

ln -s $DIST/bin/run-workflow-engine /usr/local/bin/
ln -s $DIST/bin/stop-workflow-engine /usr/local/bin/
ln -s $DIST/etc/systemd/workflow-engine.service /etc/systemd/system
systemctl enable workflow-engine
systemctl start workflow-engine

6. Configure nginx

cd /etc/nginx/sites-available
ln -s $DIST/etc/nginx/workflow-engine .
cd /etc/nginx/sites-enabled
rm default
ln -s /etc/nginx/sites-available/workflow-engine .

7. Test installation at http://yourepm.fed4fire.eu/activiti-explorer.

8.3.1 Configuration file

The configuration file of YourEPM contains information about the ports where the application
is exposed, the access to database and OAuth2 configuration. The default values shown below
are suitable for production and development, but the passwords, which should be set to their
actual values.

• START_PORT (default:8080). Port where Jetty listens.

• STOP_PORT (default:8081). Jetty listen on this port to initiate a shutdown when the
STOP_KEY is received.

• STOP_KEY (default: sooooo).

• JDBC_URL (default: jdbc:mysql://localhost:3306/activiti_f4f). Database URL.

• JDBC_USERNAME (default: f4f). Username to access the database.

• JDBC_PASSWORD: Password to access the database.

• IDM_HOST (default: https://authority.ilabt.iminds.be). URL of OAuth2 server.

http://yourepm.fed4fire.eu/activiti-explorer
https://authority.ilabt.iminds.be/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 54 of 91

• IDM_HOST_URL_LOGIN (default: /oauth_authorize.php). Path in OAuth2 server to
redirect from YourEPM to initiate a login if user is not logged in.

• IDM_HOST_URL_TOKEN (default: /oauth_token.php). Path in OAuth2 server to get
the OAuth2 token.

• IDM_APP_ID (default: atos_yourepm). ID of YourEPM in OAuth2 server.

• IDM_APP_PWD. Password of YourEPM in OAuth2 server.

• IDM_CALLBACK (default: http://yourepm.fed4fire.eu/activiti-explorer). Callback URL
from OAuth2 server to YourEPM once user is authenticated.

8.4 FUTURE WORK

The following points have been considered for development during the third cycle:

• Make YourEPM accessible to users, so they can create workflows that interact with
services exposed by the testbeds. These services must be added to the corresponding
Service Directory.

http://yourepm.fed4fire.eu/activiti-explorer

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 55 of 91

9 AUTHENTICATION PROXY SERVICE

The Fed4FIRE authentication proxy allows service providers, authenticated by Fed4FIRE+
credentials, to declare new HTTP or HTTPS endpoints (services or testbeds) to be made
accessible to any authenticated Fed4FIRE+ user. It is a self-service service for testbed or
service providers

The service or testbed provider must configure his endpoint so that the proxy can forward
requests to it. This can be done by different means: by configuring his firewall at the endpoint
or by uploading credentials to the proxy. In effect, this implies trusting the proxy to only transmit
requests originating from authenticated Fed4FIRE+ users.

Indeed, Fed4FIRE+'s architecture is based on the SFA framework, where users identify
themselves with certificates and authenticate themselves by using these certificates to secure
an TLS link to service providers. While this architecture has a lot of good properties, it is not a
good fit to consume services implemented using a REST or SOAP architecture, very common
in today's Internet. Inria's work for this component has consisted in the implementation of a
gateway, the Fed4FIRE authentication proxy, to bridge the gap between Fed4FIRE+
credentials and services.

It is available at https://f4fauthproxy.fed4fire.eu/, complete with user documentation.

9.1 REQUIREMENTS COVERAGE

The requirements defined for the component are presented in the table below, which provides
an explanation on the maturity achieved during the second cycle and the next steps for the
third cycle. The requirements highlighted in green can be considered complete.

ID Title Coverage in Second cycle

1 Expose HTTP servers (exposing APIs or
websites) only to authenticated
Fed4FIRE+ users through a self-service
authentication proxy

implemented

2 Allow HTTP server owners to control
who can access their server through the
authentication proxy

implemented

3 Transmit information extracted from the
user certificate (urn, authority urn and
email) to HTTP server accessed through
the authentication proxy through HTTP
headers

implemented

https://f4fauthproxy.fed4fire.eu/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 56 of 91

4 Allow HTTP server owner to share
control of the configuration of their
service as declared in the authentication
proxy to members of a Fed4FIRE group

implemented

5 Allow HTTP server owners to provide a
login URL to be used by the
authentication proxy if a login process is
required to access parts of their server

On-going

6 Allow HTTP server owners to secure the
link between the authentication proxy
and their server using a login and a
password

implemented

7 Allow HTTP server owners to secure the
link between the authentication proxy
and their server using a TLS client
certificate

implemented

8 Allow HTTP server owners to secure the
link between the authentication proxy
and their server by declaring the
authority of their server’s certificate

implemented

9 Allow declaration of a new HTTP server
accessible through the authentication
proxy through an API

implemented

10 Allow complete configuration of the
proxy service to an HTTP server
accessible through the authentication
proxy through an API

implemented

9.2 ONLINE DOCUMENTATION

All the documentation included hereafter is available online at https://f4fauthproxy.fed4fire.eu/.

https://f4fauthproxy.fed4fire.eu/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 57 of 91

9.3 INSTALLATION MANUAL

9.3.1 Overview

• You need to configure apt sources to be able to download and install the software

• You will need to setup a database to be used by the service

• You will need to install Fed4FIRE’s trusted root authorities

• You will need to install a client credential for f4f-auth-proxy service so it can interact
with other services in the federation

• You will need to configure a key so data at rest in the database is stored encrypted

• You will need to setup an apache frontend, complete with its TLS certificates

• You will need to start the service, and check it works

9.3.2 Debian specific instructions

9.3.2.1 Installation of the f4f-auth-proxy package

echo "deb http://packages.grid5000.fr/deb/f4f-auth-proxy/stretch /" | sudo

tee /etc/apt/sources.list.d/f4f-auth-proxy.list

sudo apt-get install gnupg dirmngr # probably already configured on your

machine

sudo apt-key adv --keyserver hkp://pool.sks-keyservers.net --recv-keys

B1F34F56797BF2D1

#sudo apt-key adv --keyserver hkp://134.93.178.170 --recv-keys

B1F34F56797BF2D1

sudo apt update

sudo apt install f4f-auth-proxy

The last command should have output a message telling you no database configured for the
package was found.

9.3.2.2 Installation of a local database for f4f-auth-proxy

For the impatient, here are quick instructions to setup a local database on the machine hosting
the service.

sudo apt-get install mariadb-server

/usr/bin/f4f-auth-proxy rake db:create # to print the expected database

parameters (you can also read/adapt /opt/f4f-auth-

proxy/config/database.yml)

sudo mysql -e "

CREATE USER auth_proxy IDENTIFIED BY '6bd17588552116e';

CREATE DATABASE f4f_auth_proxy_production CHARACTER SET utf8 COLLATE

utf8_unicode_ci ;

GRANT ALL privileges on f4f_auth_proxy_production.* to auth_proxy@'%'

identified by '6bd17588552116e' ;

GRANT ALL privileges on f4f_auth_proxy_production.* to auth_proxy@localhost

identified by '6bd17588552116e' ;"

sudo mysql_secure_installation

sudo /usr/bin/f4f-auth-proxy rake db:migrate

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 58 of 91

Warning: There is no point in saving that database without saving the content of the encryption
key, usually found in /etc/f4f-auth-proxy/conf.d/value-encryption-key.sh (see

paragraph below).

9.3.3 Configuration of the service

9.3.3.1 Install Fed4FIRE’s trusted roots

The configuration below expects all trusted roots to be concatenated in the /etc/f4f-auth-

proxy/certs/trusted_roots.pem file. This file is expected by the

SSLCACertificateFile for the apache frontend and by the fed4fire_cacerts

configuration option of the file linked through /etc/f4f-auth-proxy/fed4fire.yml. The

service makes no assumptions on how you keep that file up to date with the official list of
trusted root for the federation.

9.3.3.2 Create a client account so the service can interact with other services

Admin and usage rights to proxies created using f4f-auth-proxy can be limited to members of
the groups a user belongs to, as defined by the slice authority. For this functionality to work,
f4f-auth-proxy needs access to a user certificate corresponding to a user with privileges.

For the iminds authority, you need to create a user in the userinfo group. This user will be

used by f4f-auth-proxy when it interacts with SFA APIs as a client. It uses this capacity to

query the list of groups a user belongs to, using the lookup_for_member call defined for

Project Member Service Methods in the Federation Service APIs for slice authorities.

The client certificate will need stored at a location defined by the service_cert entry of the

/opt/f4f-auth-proxy/config/fed4fire.yml configuration file (/etc/f4f-auth-

proxy/certs/sfa_client_cert.pem by default). The password is expected to be found

in the environment by f4f-auth-proxy, as set by the startup configuration script fragment

in /etc/f4f-auth-proxy/conf.d/f4f-auth-proxy-sfa-client-pass.sh.

check we have a proper client cert

cat /etc/f4f-auth-proxy/certs/sfa_client_cert.pem

check we have saved the client cert's password

cat /etc/f4f-auth-proxy/conf.d/f4f-auth-proxy-sfa-client-pass.sh

check permissions

ls -al /etc/f4f-auth-proxy/conf.d/f4f-auth-proxy-sfa-client-pass.sh

9.3.3.3 Setup encryption key

The Fed4FIRE authentication proxy service will very probably be storing some secrets to it can
connect to the services it proxies. As these are precious, they are stored encrypted in the
database. The encryption key used by rails is found by the application in the
F4F_VALUE_ENCRYPTION_KEY environment variable, which can populated when the
application is started with the f4f-auth-proxy using a configuration file in the /etc/f4f-

auth-proxy/conf.d directory. The debian package generates a value-encryption-

key.sh file for this purpose.

https://authority.ilabt.iminds.be/
https://geni-nsf.github.io/CommonFederationAPI/CommonFederationAPIv2.html

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 59 of 91

The contents of that file are precious. All the tesbed specific data stored in the application’s
database is useless if the value is lost. Should you want to change the value generate at install
time, we strongly recommend you save the old value and date of change so as to be able to
migrate all values previously stored in the database.

9.3.3.4 Setup apache frontend for user authentication

The f4f-auth-proxy application expects to receive the certificate used to secure the TLS
connection between the client and the service as an http header. Extracting that certificate
from the network layer so it can used as a root of trust in the application layer is a task
delegated to apache in the reference implementation.

Apache must be configured for TLS, with a valid certificate (in the following example managed
by letsencrypt, but if you are just testing the software, sample certs are available at /etc/f4f-

auth-proxy/certs/), and with the proper options to check the client cert if one is used. The

Federation’s trusted roots should be available as /etc/f4f-auth-

proxy/certs/trusted_roots.pem in this example. Here is a sample

/etc/apache2/sites-available/f4f-auth-proxy.conf.

<VirtualHost *:443>

 ServerName localhost

 DocumentRoot /opt/f4f-auth-proxy/public/

 # Available loglevels: trace8, ..., trace1, debug, info, notice, warn,

 # error, crit, alert, emerg.

 # It is also possible to configure the loglevel for particular

 # modules, e.g.

 LogLevel info ssl:info

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 SSLEngine on

 # A self-signed (snakeoil) certificate can be created by installing

 # the ssl-cert package. See

 # /usr/share/doc/apache2/README.Debian.gz for more info.

 # If both key and certificate are stored in the same file, only the

 # SSLCertificateFile directive is needed.

 #SSLCertificateFile "/etc/letsencrypt/live/proxy.fed4fire.eu/fullchain.pem"

 #SSLCertificateKeyFile "/etc/letsencrypt/live/proxy.fed4fire.eu/privkey.pem"

 SSLCertificateFile "/etc/f4f-auth-proxy/certs/server.pem"

 SSLCertificateKeyFile "/etc/f4f-auth-proxy/certs/server.key"

 # Server Certificate Chain:

 # Point SSLCertificateChainFile at a file containing the

 # concatenation of PEM encoded CA certificates which form the

 # certificate chain for the server certificate. Alternatively

 # the referenced file can be the same as SSLCertificateFile

 # when the CA certificates are directly appended to the server

 # certificate for convinience.

 #SSLCertificateChainFile "/etc/letsencrypt/live/proxy.fed4fire.eu/fullchain.pem"

 SSLCertificateChainFile "/etc/f4f-auth-proxy/certs/ca/org.valid.pem"

 # Certificate Authority (CA):

 # Set the CA certificate verification path where to find CA

 # certificates for client authentication or alternatively one

 # huge file containing all of them (file must be PEM encoded)

 # Note: Inside SSLCACertificatePath you need hash symlinks

 # to point to the certificate files. Use the provided

 # Makefile to update the hash symlinks after changes.

 #SSLCACertificatePath /etc/ssl/certs/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 60 of 91

 SSLCACertificateFile "/etc/f4f-auth-proxy/certs/trusted_roots.pem"

 # Client Authentication (Type):

 # Client certificate verification type and depth. Types are

 # none, optional, require and optional_no_ca. Depth is a

 # number which specifies how deeply to verify the certificate

 # issuer chain before deciding the certificate is not valid.

 # SSLVerifyClient set Location by Location

 # SSLVerifyClient optional

 SSLVerifyDepth 10

 # SSL Engine Options:

 # Set various options for the SSL engine.

 # o FakeBasicAuth:

 # Translate the client X.509 into a Basic Authorisation. This means that

 # the standard Auth/DBMAuth methods can be used for access control. The

 # user name is the `one line' version of the client's X.509 certificate.

 # Note that no password is obtained from the user. Every entry in the user

 # file needs this password: `xxj31ZMTZzkVA'.

 # o ExportCertData:

 # This exports two additional environment variables: SSL_CLIENT_CERT and

 # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the

 # server (always existing) and the client (only existing when client

 # authentication is used). This can be used to import the certificates

 # into CGI scripts.

 # o StdEnvVars:

 # This exports the standard SSL/TLS related `SSL_*' environment variables.

 # Per default this exportation is switched off for performance reasons,

 # because the extraction step is an expensive operation and is usually

 # useless for serving static content. So one usually enables the

 # exportation for CGI and SSI requests only.

 # o OptRenegotiate:

 # This enables optimized SSL connection renegotiation handling when SSL

 # directives are used in per-directory context.

 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

 #<FilesMatch "\.(cgi|shtml|phtml|php)$">

 # SSLOptions +StdEnvVars

 #</FilesMatch>

 SSLOptions +ExportCertData +StrictRequire

 # SSL Protocol Adjustments:

 # The safe and default but still SSL/TLS standard compliant shutdown

 # approach is that mod_ssl sends the close notify alert but doesn't wait for

 # the close notify alert from client. When you need a different shutdown

 # approach you can use one of the following variables:

 # o ssl-unclean-shutdown:

 # This forces an unclean shutdown when the connection is closed, i.e. no

 # SSL close notify alert is send or allowed to received. This violates

 # the SSL/TLS standard but is needed for some brain-dead browsers. Use

 # this when you receive I/O errors because of the standard approach where

 # mod_ssl sends the close notify alert.

 # o ssl-accurate-shutdown:

 # This forces an accurate shutdown when the connection is closed, i.e. a

 # SSL close notify alert is send and mod_ssl waits for the close notify

 # alert of the client. This is 100% SSL/TLS standard compliant, but in

 # practice often causes hanging connections with brain-dead browsers. Use

 # this only for browsers where you know that their SSL implementation

 # works correctly.

 # Notice: Most problems of broken clients are also related to the HTTP

 # keep-alive facility, so you usually additionally want to disable

 # keep-alive for those clients, too. Use variable "nokeepalive" for this.

 # Similarly, one has to force some clients to use HTTP/1.0 to workaround

 # their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and

 # "force-response-1.0" for this.

 BrowserMatch "MSIE [2-6]" \

 nokeepalive ssl-unclean-shutdown \

 downgrade-1.0 force-response-1.0

 # MSIE 7 and newer should be able to use keepalive

 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 61 of 91

 <Location "/">

 # Client verification optional so the app can display errors

 # messages with instructions

 SSLVerifyClient optional

 RequestHeader set X-Fed4fire-Client-Cert %{SSL_CLIENT_CERT}s

 ProxyPass "http://127.0.0.1:8000/"

 ProxyPassReverse "http://127.0.0.1:8000/"

 RequestHeader set X-Forwarded-Proto https

 </Location>

 # Allow users to browse doc and read the landing page

 # without being requested a client cert

 <Location ~ "/(install|documentation|user|$|favicon.ico$)">

 SSLVerifyClient none

 </Location>

 <Location "/assets/">

 Require all granted

 # Use of ETag is discouraged when Last-Modified is present

 Header unset ETag

 FileETag None

 # RFC says only cache for 1 year

 ExpiresActive On

 ExpiresDefault "access plus 1 year"

 ProxyPass !

 </Location>

</VirtualHost>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

You then need to enable the required modules and then the site:

sudo a2enmod ssl headers proxy proxy_http expires

sudo a2ensite f4f-auth-proxy.conf

9.3.4 Starting and checking the service

sudo systemctl start apache2 f4f-auth-proxy

sudo systemctl status apache2 f4f-auth-proxy

You should now be able to access the service’s homepage at https://your.location/ If you don’t
provide a client cert, you will only have access to the documentation (an in app version of the
API documentation, and if you do, you should be able to create a proxy for an endpoint, and
then use it.

9.3.5 Debugging tools

sudo systemctl status apache2 f4f-auth-proxy

sudo less -R /var/log/f4f-auth-proxy/production.log

sudo less -R /var/log/apache2/error.log

https://f4fauthproxy.fed4fire.eu/API.html

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 62 of 91

9.3.6 End-user manual

9.3.6.1 Authentication for all users

All user authentication for f4f-auth-proxy is based on certificates at TLS level. You need to be
able to prove to the service you are the legitimate owner of a certificate signed by a Fed4FIRE+
member authority.

To access the web-based interface, you will therefore be required to upload such a certificate
to your browser. For user of the iMinds authority, you can do so by uploading the PKCS12 cert
available from the https://authority.ilabt.iminds.be/getcert.php. Your browser should try to
handle the downloaded certificate itself, and ask whether it should import it.

If you are accessing f4f-auth-proxy’s API, or the API of a service or testbed through a proxy
entry-point, you might need the certificate in a PEM format. This is the ‘login certificate’ also

available from the same page for users registered with the iMinds authority.

Figure 30: screenshot of a page allowing Fed4FIRE users to get a client certificate

https://authority.ilabt.iminds.be/getcert.php
https://authority.ilabt.iminds.be/getcert.php

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 63 of 91

9.4 AS A PROXY USER

For each registered testbed or endpoint, the f4f-auth-proxy acts as a proxy when queried using
https://f4fauthproxy.fed4fire.eu/proxy/<testbed or end point name>. That url is derived from the
short name registered by the testbed or endpoint owner, and described as the proxy url of

each testbed on the page listing configured proxies.

When that url points to a service usable through the web browser, clicking on the link in the
proxy url should bring up the testbed’s web page. If it is an API, sending GET, POST, PUT,

DELETE requests to the proxy url will forward these requests to the final endpoint.

For debugging purposes, the Via header is completed when answers come back through the
proxy, allowing the user to differentiate errors at the proxy level and error at the endpoint.

Figure 31 : screenshot of the list of proxies, with the url to use each

9.4.1 Endpoint or testbed user manual

The core principle for an endpoint or testbed owner adding a proxy using f4f-auth-proxy’s self-
service portal is to secure the link between the service and his testbed or endpoint, as
illustrated in Figure 45.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 64 of 91

To achieve this, the f4f-auth-proxy service allows owners of testbeds or endpoints to run a
security setup wizard that presents them with a web interface enabling them to choose one or
more of the following options:

• HTTP basic auth over https (username/password). Here, the HTTP server at the
endpoint/testbed is configured to allow access for a given user identified by a
password. This is only secure if the link to the endpoint/testbed is established using
TLS. To enable this, you need

o to configure the Fed4FIRE proxy with the username and password to use to
access the endpoint. These will only be made visible to the people who can
manage the endpoint/testbed in the application.

o Ensure the Fed4FIRE authentication proxy will trust the endpoint/testbed
certificate presented to it while establishing the TLS link.

• TLS client auth. The TLS protocol allows a client to identify itself using a certificate
while securing the TLS link. This requires the endpoint/testbed to be configured to
check the client certificate. To enable this, you need to upload the certificate and
private key to be used by the proxy.

• Firewall; It is also possible to restrict access to the endpoint/testbed by setting up a
firewall or an access list at the endpoint security domain entry point. For this, you only
need to know that the Fed4FIRE+ authentication proxy connects from the IP
addresses shown by the interface and to setup your firewall or access list
accordingly.

• Setup a connection proxy. This should be possible using the connections options that
can be configured for each testbed, but is not supported by the security wizard.
Please use the general configuration options of each testbed to configure them.

The general configuration page for each endpoint or testbed declared also gives control to
owners to

• Specify users that are allowed to use the endpoint through the proxy (a specific user,
all user in the same group as declared in a specific Slice Authority the service has
access to, all Fed4FIRE+ users).

• Specify users that are allowed to change the configuration of the proxy service to the
testbed or endpoint.

Figure 32:Securing the link between the service and an endpoint

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 65 of 91

• Specify headers that are forwarded to the endpoint. These headers come in 2
flavours : generic http headers and headers whose value is extracted from the client’s
certificate (urn, email, authority having signed the cert, and the complete certificate)

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 66 of 91

10 CENTRAL BROKER

The Central Broker acts as an overarching service that can be utilized by the experimenters to
discover resources that span the federation and fulfil their experimentation requirements. More
specifically, the Central Broker receives as input general specifications from the users related
to date and time they want to run their experiment, technologies involved like Wired, Wireless,
5G, IoT, OpenFlow, Big Data, hardware specifications of the nodes like number of CPUs,
amount of RAM and storage and finally number of nodes that denote the scale of the
experiment willing to conduct in Fed4FIRE. Upon receiving these requests, the Central Broker
filters the available resources of the federation and maps the experimenters’ requests to the
actual testbed resources, providing as output a proposed set of resources to the experimenter,
who in his turn decides whether to request/reserve these resources for his experiment.

To this end, the Central Broker needs to keep an up-to-date inventory of the available
resources of all the testbeds that are part of the federation. The updated inventory allows the
service to apply its mapping algorithm that take into consideration the user’s requirements
along with the characteristics of the available resources and provide the results without any
significant delays.

10.1 REQUIREMENTS COVERAGE

The requirements defined for the Central Broker are presented in the table below, which
provides an explanation on the maturity achieved during the second cycle and the next steps
for the third cycle.

ID Title Coverage in Second cycle

1 Retrieve resource availability of all the
testbeds of the federation.

It was fully covered by the usage of
FedMon service which monitors all
the testbeds and stores information
regarding their available resources.

2 Keep an up-to-date inventory of the
available resources of all the testbeds
that are part of the federation.

It was fully covered by the extension
of the Central Broker database
schema and information model.

3 Provide a method that enables
experimenters to express their resource
requirements in a future proof extensible
way.

It was fully covered by the utilization
of the REST API and the JSON
format that can be extended on will for
future extensions.

4 Support all the different testbed
technologies like Wireless, Wired, 5G,
Cloud, IoT, Big Data and OpenFlow in
the resource mapping algorithm.

It was fully covered by the refactoring
of mapping algorithm and the
provision of an updated API. For
future updates on testbed resources

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 67 of 91

10.2 ARCHITECTURE

In the following diagram the overall architecture can be seen. From the user’s perspective the
workflow includes a query to fed4fire.eu portal regarding date and time they want to run their
experiment, technologies involved and number of nodes. These requirements are mapped by
the Central Broker to a recommended set of resources that are presented to the experimenter.
In the next step, the experimenter will be able to launch jFed through fed4fire.eu portal and
request the recommended resources before starting the execution of his experiment.

Figure 33: Architecture

(upgrades/new additions) the same
process will be followed.

5 Respond with a set of available
resources that meet the experimenter’s
requirements.

It was partially covered by the
continuous resource availability
update every 20 minutes. The
accuracy of Central Broker will be
monitored and corrective actions will
be made in the Third cycle if
necessary.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 68 of 91

Behind the scenes, the following interactions take place. The federation monitoring service
FedMon queries the Federation testbeds every 20 minutes, collecting information including
available resources. The Central Broker queries the REST API of FedMon service in order to
retrieve that information and keep an updated inventory in its internal database. Every time a
user is providing its requirements through fed4fire.eu a REST call is made towards the REST
interface of the Central Broker, which after mapping the requirements of the experimenter it
responds with a set of available resources that match his requirements.

10.3 SEQUENCE DIAGRAMS

A more detailed representation of the interactions between the several architectural
components can be seen in the sequence diagram below. There is a block for every actor
which is involved in the process of discovering the required resources, requesting and
executing the experiment. More specifically, the sequence diagram includes the following
actors: i)Experimenter, ii)fed4fire.eu portal, iii)jFed iv)Central Broker, v)FedMon and
vi)Testbeds. Every 20 minutes there is an action from FedMon which monitors the federation
testbeds by executing several test routines, including the resource availability of each testbed.
The Central Broker keeps its inventory updated by querying the FedMon service through its
REST API and collecting the information regarding resource availability per testbed.

Every time an experimenter is using the fed4fire.eu portal to discover resources that match his
requirements, a REST call is made to the Central Broker which includes the experimenter’s
resource requirements like date, time, volume of resources, type of technology and hardware
capabilities. The Central Broker runs a resource mapping algorithm, which provides as a
response a set of resources that match the experimenter’s requirements.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 69 of 91

Figure 34: Sequence Diagram

Finally, the experimenter can launch jFed through fed4fire.eu portal in order to request the
recommended resources by the testbeds and proceed to the experiment execution. During the
execution, the resources will be provisioned by the testbeds, the experimenters will execute
their scripts on the resources and the experiment measurements will be collected before the
resources are released.

10.4 USER MANUAL

The REST endpoint of the Central Broker offers a single operation which is about mapping
experimenters’ resource requirements to a specific set of resources. The REST API call
conveys the experimenters’ requirements in JSON format and responds with a JSON that
describes the recommended resources.

POST /API/mapper

This operation is used to perform a mapping task at the Central Broker.

Description:

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 70 of 91

• It receives a JSON describing resource requirements like date, time, number and type
of resources and hardware capabilities. It responds with a JSON listing all the valid
resources that match the initial requirements.

REQUEST

POST API/mapper
Content-type: application/json

{
 JSON Resource Requirements
}

RESPONSE

201
Content-Type: application/json

{
 JSON Resource Representation
}

The Central Broker accepts the following JSON fields that can describe user’s requirements
regarding resources. In the following example an experimenter requests two resources with
WiFi interfaces during Monday 2nd of December 09:00 until 17:00. There are also some
minimum requirements regarding number of CPUs (2), RAM (4 GiB) and storage (60 GiB).

{
 "resources": [
 {
 "exclusive": true,
 "hardware_type": “wifi”,
 "valid_from": “Mon Dec 2 09:00:00 EET 2019”,
 "valid_until": “Mon Dec 2 17:00:00 EET 2019”,
 "cpu": 2,
 "ram": 4,
 "storage": 60
 },
 {
 "exclusive": true,
 "hardware_type": “wifi”,
 "valid_from": “Mon Dec 2 09:00:00 EET 2019”,
 "valid_until": “Mon Dec 2 17:00:00 EET 2019”,
 "cpu": 2,
 "ram": 4,
 "storage": 60
 }
]
}

In the following table there is a complete list of the fields together with their description than
can be present in the JSON body of a resource mapping request.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 71 of 91

Field Description

exclusive Valid values can be “true” or “false”, which denotes whether the experimenter has

exclusive bare metal access to the resource, or he is sharing the resource (Virtual

Machine).

hardware_type Can be used in order to require a specific technology like WiFi, 5G, Cloud, Big

Data, IoT, OpenFlow or Wired. Values of this field continuously change as

testbeds add new resources and technologies. Current valid values include the

following keywords: “wifi”, “5g”, “iot”, “bigdata”, “openflow” and “wired”.

valid_from The experimenter can define a date and time that he wants his resources to be

available.

valid_until Accordingly, the experimenter can define the date and time that he is willing to

end his experiment and free the requested resources.

cpu Number of minimum CPUs required. Valid values: [2-16]

ram Number of minimum RAM (GiB) required. Valid values: [2-48]

storage Number of minimum storage (GiB) required. Valid values: [4-4000]

Based on the JSON request given as an example above, the following JSON shows a valid
response from the Central Broker that meets the requirements set by the experimenter. It lists
two resources with WiFi capabilities from the wireless testbed w-ilab.t that are available for
reservation during the specified time window.

{
 "resources_response": {
 “resources”: [
 {
 "exclusive": true,
 "name": “nuc9-29”,
 "valid_from": “Mon Dec 2 09:00:00 EET 2019”,
 "valid_until": “Mon Dec 2 17:00:00 EET 2019”,
 "domain": “wilab1.ilabt.iminds.be”,
 },
 {
 "exclusive": true,
 "name": “nuc9-30”,
 "valid_from": “Mon Dec 2 09:00:00 EET 2019”,
 "valid_until": “Mon Dec 2 17:00:00 EET 2019”,
 "domain": “wilab1.ilabt.iminds.be”,
 }
]
 }
}

The following table describes the fields that can be found in a JSON response from the Central
Broker.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 72 of 91

Field Description

exclusive Valid values can be “true” or “false”, which denotes whether the experimenter has

exclusive bare metal access to the resource, or he is sharing the resource (Virtual

Machine).

name The name of the resource that meets the requirements.

valid_from Date and time that the resource is available.

valid_until Date and time that the resource will be released.

domain Unique identifier of the testbed, which the resource belongs to.

10.5 FUTURE WORK

The federation service of Central Broker will need continuous maintenance and updates in
order to keep following every resource change that happens in the testbeds. While testbeds
add new resources or upgrade existing ones, the inventory of Central Broker must be extended
in order to accommodate these changes. Moreover, the resource mapping algorithm needs to
be refactored in order to reflect the new hardware capabilities available by the newly added
resources. The REST API of the Central Broker will have to be updated as well in order to be
able to express the new capabilities provided.

Apart from continuous updates and maintenance, the Central Broker will be assessed in order
to verify whether the 20 minutes interval window is sufficient or not to provide accurate
resource information to the experimenters. There will be two approaches for determining the
successful and failed resource requests that were recommended by the Central Broker. First
a feedback button will be created in fed4fire.eu portal when users submit their resource
preferences and receive the corresponding recommendations by the Central Broker. The
experimenter will be able to give immediate feedback on whether the recommendations were
available or not and their sufficiency with regards to the provided requirements. A second
approach will be made by checking the availability of resources every time a request is made
to the Central Broker. This will be made possible by querying the corresponding testbeds
regarding the availability of resources at the time a resource recommendation is generated by
the mapping algorithm of the Central Broker.

The results of the Central Broker assessment on valid resource recommendations will allow
for any necessary corrective actions. If the percentage of unavailable resources is high for
every resource recommendation, a possible solution will be to offer alternative
recommendations to pick from. Moreover, if there is a tendency on invalid availability of
resources on specific testbeds due to high number of experimenters’ requests for resources,
solutions like decreasing the polling interval window per testbed will be examined.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 73 of 91

11 ONTOLOGIES

11.1 SEMANTIC BASED RESOURCE DESCRIPTION

In a federated environment, such as the Fed4FIRE+ project, an in-depth description of the

testbed facilities and their resources would support users in all phases of an experiment, like

resource discovery, reservation and construction of an execution scenario. Given the

heterogeneity of the various nodes employed in the case of Fed4FIRE+, one particular issue

that emerges is the description of these offerings. SFA, the de facto standard API for testbed

federation, uses XML-based Resource Specifications (RSpecs) with arbitrary extensions to

describe, discover, provision and release resources. However, such tree-based data models,

lack consistency, standardized vocabularies as well as semantic meanings, therefore impede

interoperability within a federation [WiPa15] [MoWi16]. In the context of the WP3 Task 3.5, re-

usage and extension of already well-defined standard semantic models are adopted for

representing and linking Fed4FIRE+ federated resources. Additionally, the usage of a

semantic registry repository for testbeds and resources will enable experimenters to find and

book resources more easily. For this purpose, the OMN ontology suite [WiPa15], [MoWi16] is

adopted and extended; the OMN ontology is being developed within the W3C Federated

Infrastructures Community Group 4. The use of OMN leads to:

• Introduction of the necessary extensions and adoption of existing ontologies relative to

the Fed4FIRE+ experimentation environment (Wireless Nodes, Interfaces, etc.),

• Maintenance of compatibility and interoperability with existing SFA-enabled

infrastructures, by using the information model and the corresponding data models with

the Aggregate Manager.

The OMN Wireless ontology, mainly used in the semantic description of the testbeds’

resources, follows the common practice, in semantic modelling, of using already well-defined

ontologies; it is generic, and it aims to describe any wireless entity utilized in a Fed4FIRE+

experiment.

11.1.1 Deployment of the OMN Wireless Ontology

An OMN Wireless Ontology demo is available to interact at http://147.102.13.123:7200/sparql

(“NETMODE-testing” repository) via the GraphDB workbench. Furthermore, some instances

of the NETMODE testbed’s wireless nodes are created; The figure below depicts a complicated

diagram showing the top relationships, where each of them is a bundle of links between the

individual instances of two classes. Each link is an RDF statement where the subject is an

instance of one class, the object is an instance of another class, and the link is the predicate.

Depending on the number of links between the instances of two classes, the bundle can be

thicker or thinner and gets the colour of the class with more incoming links.

http://147.102.13.123:7200/sparql

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 74 of 91

Figure 35: Class Relationships Stats

The figure depicts the graph of one Wireless Node instance, named “Alix01” and its

relationships. This Wireless Node is based on an alix3d2 board and it is resource of the

NETMODE testbed. Its reservation state is Unallocated. It is equipped with a main RJ45

interface, namely eth0 which supports the 802.3u standard and 2 wireless interfaces, wlan0

and wlan1, which support the 802.11a/b/g standards. These interfaces are instances of the

omn-resource:Interface class. Furthermore, the Node is equipped with processor, memory and

storage components, as shown; these components are instances of the omn-component:CPU,

omn-component:MemoryComponent and omn-component:StorageComponent classes

respectively. Data properties are not present in this visualization.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 75 of 91

Figure 36: "Alix01" Wireless Node

11.1.2 Reasoning & Knowledge Inference on the OMN Ontology

The Semantic Web is considered to be a layered structure; at its core the Resource Description
Framework (RDF) represents triples (subject-predicate-object) in a graph-based data model,
independent of a specific serialization (single fact description). In order to describe simple
ontologies, however, important vocabularies missing in the RDF specification have been
defined with Resource Description Framework Schema (RDFS). By introducing classes,
ranges and domains, along with subclassing properties and the accompanying transitive
entailment rules, basic ontologies can be defined. In pursuance of constructing larger sets of
more complex ontologies that require specifications like equivalency, symmetry or inverse

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 76 of 91

relations, further sets of semantic annotations and rules have been introduced; Web Ontology
Language (OWL) in its two variants, OWL Full & OWL DL.

In general, reasoning over the abovementioned semantic models allows the evaluation of
axioms to automatically extend the knowledge within the stored RDF graph. Inside the RDF
graph, data is modelled as a set of (named) relationships between resources. Inferencing can
be identified as the set of procedures which can generate new relationships based on the
existing stored data, along with some additional information in the form of a vocabulary, i.e. a
set of rules. Certain software engines exist that apply those logical rules and deduce implicit
knowledge. The main reasoning tasks performed by such inference engines are; (i) discovering
inferences based on asserted information; (ii) computing all the subclass relationships among
the classes, i.e. if concept A subsumes concept B (subsumption); (iii) checking whether the
assertions in the Knowledge Base satisfy the given model (consistency); (iv) computing the
instance class memberships, i.e. the set of instances belonging to a certain concept.

The Semantic Expressivity implies the Reasoning Capabilities in every Semantic Web’s layer.
The RDF layer consists of straightforward knowledge representations only, so no reasoning or
inference capability is supported. The RDFS, with its more expressive vocabulary offers some
limited knowledge extension capabilities through entailment rules. The highest level of
expressivity is present at the OWL layer, which adds semantic richness and ontological
capability to the schema thus making complete reasoning feasible. In particular, OWL Full
provides the highest possible expressivity by allowing unrestricted use of capabilities, meaning
that there exists no guarantee that all resulting statements are valid, due to undecidability
issues. On the other hand, OWL DL, a syntactically restricted version of OWL Full, offers
several production quality reasoners under the Direct Semantics, providing a sound and
complete reasoning paradigm. The OMN ontology, is a validated OWL 2 DL Knowledge Base;
examples of inferred relationships can be observed in the above figure, in some two-way
relationships: isInterfaceOf is the counterpart relationship if hasInterface.

More specifically, in this context, the GraphDB reasoning engine2 has been integrated to
support the aforementioned functionality. GraphDB performs reasoning based on forward-
chaining of entailment rules defined using RDF triple patterns with variables. The inference
rules are applied repeatedly to the asserted statements until no further inferred statements are
produced (“total materialization”). The included repository uses configured rulesets - sets of
axiomatic triples, consistency checks and entailment rules, which determine the applied
semantics - to compute all inferred statements at load time. By doing so, it has the desirable
advantage that subsequent queries evaluation can proceed with no delay.

GraphDB offers predefined semantics by way of standard ruleset files (e.g. rdfs, rfs plus, owl-
horst, owl-max etc.), but can also be configured to use custom rulesets with semantics better
tuned to any particular domain. The syntax of a rule definition is as follows:

2http://ontotext.com/products/graphdb/

http://ontotext.com/products/graphdb/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 77 of 91

Id: <rule_name>

 <premises> <optional_constraints>

 <consequences> <optional_constraints>

11.2 SEMANTIC AGGREGATE MANAGER ARCHITECTURE (SAM)

11.2.1 ARCHITECTURE description

The Semantic Aggregate Manager (SAM) architecture follows design principles which were
formed by taking into consideration all the desired features that a manager framework should
provide, based on the requirements that were delineated in Section 3. Initially based on the
NITOS Aggregate Manager Architecture [StDa15], the framework was modified and expanded
to accommodate the support of semantic aware resource descriptions in parallel with SFA-
based legacy resource descriptions.

As depicted in Figure 3, the resulted framework is divided in several fundamental architectural
components, each of which possesses significant role in a specific problem area of the facility
management; (i) the communication interfaces which facilitate the communication with external
actors, followed by the (ii) authentication/authorization context which acts as a security
intermediary between the internal system and the outside world; (iii) the management layer
where most of the framework’s intelligence is accumulated, including the orchestration of the
supported functionality to fulfil a requested action and the required database transactions.

11.2.2 Functional components

11.2.2.1 Communication Layer

One essential characteristic of the presented management framework is its versatility in terms
of communication interfaces or else APIs. In our implementation, two major communication
interfaces are utilized. Initially the custom REST API is developed to facilitate support of the
experiment’s lifecycle while leveraging semantically enriched resource descriptions. Next to
that, an XML-RPC API has also been implemented supporting SFA, one of the widely used
protocols in the field of testbeds, thus enabling interoperability with existing testbed
management platforms.

(Semantic aware) REST API: The REST API is tailored to support the discovery, reservation,
provision and release functionality of the networking resources. It leverages the OMN-based
[WiPa15] resource descriptions stored in the local Semantic Graph Database, to provide the
users/experimenters with semantically enriched information regarding the resources managed
by the respective testbed. Thus, the users are able to allocate and provision resources that
correspond to their experiments’ specifications, as well as release these resources when no

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 78 of 91

longer used. Complementary to this functionality, this API exposes the essential administrative
management methods; namely, resource description retrieval, creation, update and deletion
are supported.

Figure 37: Semantic Aggregate Manager Architecture

(SFA enabled) XML-RPC API: This API is exposed by the AM in order for the SAM platform

to be interoperable with existing SFA [PeSe09] enabled provisioning tools (e.g. jFED, omni)

and to allow federation with existing testbed management platforms that confront with the SFA

and the GENI API v3 [BeCh14] specification. It is practically an implementation of the GENI

AM API v3 which is used both in GENI and FIRE [GaKa07] testbeds as a way of federation.

Backwards compatibility with GENI AM API v2 is also present, allowing our framework to be

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 79 of 91

reachable not only by tools that are compatible with the latest API, but also by tools that are

compatible with v2 AMs. Throughout the XML-RPC API, multiple arguments and returns are

labelled as an RSpec3. This resource specification is the primary data structure used within

the API and follows a specific set of schemas.

11.2.2.2 Authentication/Authorization Layer

The authorization/authentication system is of paramount importance to any testbed
management framework and our platform is no exception. The implemented
Authentication/Authorization (A/A) module is where requests invoked in the communication
layer are granted approval (or denied respectively), subject to the credentials submitted by the
experimenter. Each of the APIs exposed in the communication layer, utilizes its own dedicated
mechanism of handling credentials, which can be configured to authenticate the
experimenters, thus determining their privileges (authorization).

The aforementioned experimenter privileges are derived through client-side X.509 certificates,
in all the interfaces, and are assigned to members of testbeds federated with the given testbed
(“certificate authorities”). However, these certificates’ structure alternates whether they are
targeted at the REST or the SFA communication interface, in a way that they contain distinct
attributes meant to be handled by interface-specific methods. To illustrate this specificity, the
SFA X.509 certificates use an extension in order to provide a uniform resource name (URN),
which enables the testbed Aggregate Manager to link an associated SFA request to a specific
experiment. Following the privileges extraction, it is then designated whether the user is
permitted to (i) Retrieve, (ii) Create, (iii) Modify or (iv) Release a (a) Resource, (b) Account or
(c) Reservation. More specifically, alongside each request comes a signed XML file containing
the user’s privileges, guiding the A/A module to map them with the abovementioned permitted
actions.

The goal of the A/A module is to facilitate the modification and description of fine-grained
policies defined by testbed administrators. As mentioned, in our platform this is accomplished
thanks to the discrimination of policies which are divided based on their protocol (SFA, REST)
and then mapped to a certain set of rules and assertions.

11.2.2.3 2Management Layer

omnlib Translator: One of the core innovations of this work package is the semantic
description of experimental resources (OMN ontology) and the development of the respective
management mechanisms. In order to support federation with SFA testbeds, which use legacy
data formats, it is necessary the API method calls and the respective semantic descriptions to
be translated into the respective SFA data models/formats. This component was initially
implemented to help developers work with Open-Multinet related ontologies and was included

3http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 80 of 91

in the OMN suite. In particular, this integration of the omnlib Translator with our platform
provides support for translating locally used GENI RSpecs (structured data models) into RDF-
based graphs and back. The main advantage of this approach is the automation and speed up
of conversion of data the is not using RDF, while ensuring that the quality of the generated
RDF data corresponds to its counterpart data in the original system.

Scheduler: The Scheduler component is the provider of the main functionality of the system,
since it is the part where decisions regarding resource reservation take place, based on their
availability. More specifically, when a request for booking a resource is received in the
Communication Layer and forwarded to the Scheduler component via the Inventory Manager,
firstly the Scheduler compares the requested booking’s start and expiration time with those of
the existing, active reservations. Afterwards, it decides based on possible timeslot conflicts
and while taking into account the authorization context, whether to fulfil the request or reject it.
In our platform, a simple First-Come-First-Served (FCFS) policy is applied to the requests for
resource reservation. However, with minor modifications in the Scheduler component, testbeds
administrators are able to define their own resource allocation policies (e.g. implementing a
user role/status policy).

Inventory Manager: The manager is where all the related policies and resource management
is concentrated. Requests regarding resource discovery, booking and reservation, resource
provisioning and release (i.e. user tasks), as well as resource description retrieval, creation,
update and deletion (i.e. administrative tasks) are forwarded from the Communication Layer
to the Inventory Manager. This component facilitates the orchestration and coordination of the
actions required to fulfil the aforementioned requests. These actions include, but are not limited
to, forwarding the received GENI RSpec to the Translator and receiving the respective
Semantic description (and vice-versa), consulting the Scheduler about the feasibility of booking
the requested resources, manipulating proper objects which achieve compliance with the
established Data Models and storing/retrieving them to/from the GraphDB triplestore,
formulating responses and directing them back to the Communication Layer. Throughout the
whole process, the manager constantly addresses the A/A Layer in order to access policy-
sensitive content and perform policy-sensitive tasks.

Data Models & RDF Triplestore: Taking into consideration the fact that a way to store and
access the RDF data model described in section 2.1, an agile, software – integrated way is
necessary, the Spira Ruby framework4 has been utilized. Spira is a framework for using the
information in RDF repositories as model objects. It provides the ability to work in a resource-
oriented way without losing access to statement-oriented nature of linked data, if preferred. It
can be used either to access existing RDF data in a resource-oriented way, or to create a new
store of RDF data based on simple defaults. Every ontology class described has been
modelled as a Spira Class and each ontology property as a Spira Class property, thus enabling

4 https://github.com/ruby-rdf/spira

https://github.com/ruby-rdf/spira

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 81 of 91

the instantiation and manipulation of RDF Triples as Ruby Objects, leveraging the ORM
technique5.

In our case, an RDF persistent triplestore has been implemented leveraging a GraphDB graph
database, as mentioned before. GraphDB is an enterprise ready Semantic Graph Database,
compliant with W3C Standards. Semantic graph databases provide the core infrastructure for
solutions where modelling agility, data integration, relationship exploration and cross-
enterprise data publishing and consumption are important. In addition, inside GraphDB, data
are modelled in a way that allows interlinking and querying entities, profiling the relationships
between them. Last but not least, it can perform semantic inferencing at scale, allowing users
to create new semantic facts from existing facts. This can be achieved through the designation
of rules that represent domain specific logic as an explicit part of the data model.

Reasoning Engine: The functionality of this component relies on the specifications delineated
in the previous section. Being an intermediate layer between the Inventory Manager and the
Triplestore, its main function lies in the deduction of implicit knowledge based on explicit
statements stored inside the Triplestore. This extended knowledge may become permanently
stored or leveraged to assert miscellaneous requests received in the communication layer.

11.3 SEMANTIC AWARE MANAGEMENT REQUIREMENTS

In Deliverable 3.3, the functional and non-functional requirements were presented. These
requirements cover the basic aspects of the semantic aware management of the F4F+ wireless
resources. The following tables shows the status of the recorded requirements.

11.3.1 Functional Requirements

Semantic Based Resource Descriptions Requirements

ID SRD_01

Title Semantic Modelling of Experiment Management Concepts

Short description All concepts participating in the experiment lifecycle should be modelled

and linked using the appropriate semantics. These concepts include F4F+

wireless testbeds and their respective resources utilizing the already

developed ontology of OMN suite. The aforementioned heterogeneous

concepts should be described in a formalized manner to build a basis for

their management based on their semantics, i.e. their underlying meaning

and relations.

Relevant Use

Case(s)

Discover available resources leveraging semantic descriptions; Discover

available resources based on criteria; Discover available resources based

on inferred knowledge; Retrieve information about some testbed resources

5 https://en.wikipedia.org/wiki/Object-relational_mapping

https://en.wikipedia.org/wiki/Object-relational_mapping

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 82 of 91

& reservations; Create semantic descriptions representing testbed's

resources; Validate experiment scenarios based on semantic resource

descriptions

Type “Data”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID SRD_02

Title Semantic Aware Support of Experiment Lifecycle

Short description The system should be able to support the experiment’s lifecycle while

leveraging semantically enriched resource descriptions. In this context,

users should be able to discover, reserve, provision and release the

testbed’s semantically modelled resources. These are basic functionalities

upon which more intelligence can be built. This requirement is of significant

importance as it will facilitate the federation-wide interoperability.

Relevant Use

Case(s)

Discover available resources leveraging semantic descriptions; Discover

available resources based on criteria; Discover available resources based

on inferred knowledge; Book resources suitable for the experiment's

requirements; Book resources in advance; Check the status a

pending/ongoing reservation; Renew an ongoing reservation; Cancel an

ongoing reservation and release the respective resources; Access historical

data of past reservations

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Ongoing

ID SRD_03

Title Semantic Aware Support of Administrative Tasks

Short description The system should be able to support the administrative tasks while

leveraging semantically enriched resource descriptions. In this context,

administrators should be able to retrieve, create, update and delete the

testbed’s semantically modelled resources.

Relevant Use

Case(s)

Retrieve information about some testbed resources & reservations; Retrieve

information based on criteria; Create semantic descriptions representing

testbed's resources; Modify descriptions and ongoing reservations; Delete

descriptions; Access historical data of past reservations

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 83 of 91

ID SRD_04

Title Reasoning & Knowledge Inference

Short description The system should be able to apply logical rules to the stored knowledge

base and deduce new (inferred) knowledge. The integration of a reasoning

engine, capable of the aforementioned behaviour is essential for the F4F+

project to exploit the benefits of semantically modelled data.

Relevant Use

Case(s)

Discover available resources based on inferred knowledge; Validate

experiment scenarios based on semantic resource descriptions

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

SFA Based Testbed Management & Federation Requirements

ID TMF_01

Title SFA Based User Authentication & Authorization

Short description Access to resources within a testbed should not be provided to

unauthenticated users. Based on the trusted identity of a user and other

attributes that will be provided, specific authorization policies should take

effect. Adopting SFA, unified authentication and authorization should be

based on X509 certificates. The federation Registry (and corresponding

APIs) shall be able to authenticate users and provide them with the

necessary credentials to book resources.

Relevant Use

Case(s)

Authenticate using x509 certificates

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID TMF_02

Title SFA Based Support of Experiment Lifecycle

Short description The semantic aggregate manager should expose the appropriate API,

providing methods that facilitate resource discovery, booking and

reservation, resource provisioning and release, thus maintaining

compatibility and enabling interoperability with existing SFA enabled

infrastructures.

Relevant Use

Case(s)

Discover available resources using SFA enabled tools; Book resources

suitable for the experiment's requirements; Book resources in advance;

Access historical data of past reservations; Check the status a

pending/ongoing reservation; Renew an ongoing reservation; Cancel an

ongoing reservation & release the respective resources

Type “Functional”

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 84 of 91

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID TMF_03

Title Support of XML based RSpec documents

Short description In order to successfully integrate SFA, the Resource Specification (RSpec)

XML documents should be adopted, alongside semantics, as a common

language for describing resources, resource requests and reservations.

Relevant Use

Case(s)

Discover available resources using SFA enabled tools; Book resources

suitable for the experiment's requirements; Check the status a

pending/ongoing reservation; Renew an ongoing reservation; Cancel an

ongoing reservation and release the respective resources

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

Interoperability Requirements

ID INT_01

Title Interoperability with SFA enabled Provisioning Tools

Short description The semantic aggregate manager should expose the appropriate version

of the GENI API in order to facilitate interoperability with the well-known

SFA enabled provisioning tools (e.g. MySlice, jFED, omni).

Relevant Use

Case(s)

Authenticate using x509 certificates; Discover available resources using

SFA enabled tools; Book resources suitable for the experiment's

requirements; Check the status a pending/ongoing reservation; Renew an

ongoing reservation; Cancel an ongoing reservation and release the

respective resources

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID INT_02

Title Parallel Use of Semantic & SFA Based Resource Descriptions

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 85 of 91

Short description The F4F+ testbeds should be able to become federated with existing

testbeds that support SFA and use XML based RSpecs, while at the same

time, the federation should exploit the benefits of a semantic web approach,

(i.e data semantics). Translation mechanisms should be adopted in order

to facilitate alternation between those data formats.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

General Requirements

ID GEN_01

Title Scheduling of Bookings

Short description The system should enable users to book resources in advance. Each

available F4F+ wireless resource should be able to become reserved for a

period of time defined in a lease tag during the request.

Relevant Use

Case(s)

Book resources in advance

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID GEN_02

Title Storage of Historical Data

Short description Users should be able to access historical data of their entire past executed

actions and experiments.

Relevant Use

Case(s)

Access historical data of past reservations

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID GEN_03

Title Asynchronous Request Processing

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 86 of 91

Short description The system should support asynchronous request processing for the faster

completion of time-consuming tasks and the concurrent serving of multiple

users.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

ID GEN_04

Title Data Consistency

Short description Presented data to the users must be valid and correspond to the current

status of their resources and experiments.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Functional”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Implemented

11.3.2 NON-Functional Requirements

Usability

ID US_01

Title Consistent User Experience

Short description The semantic aggregate manager should provide consistent user

experience.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Usability”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Accepted

ID US_02

Title User-friendly Installation

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 87 of 91

Short description Minimal and easy installation of the semantic aggregate manager on top of

the testbed’s existing infrastructure.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Usability”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Accepted

ID US_03

Title User-friendly Configuration and Usage

Short description The configuration process and use of the semantic aggregate manager

should be easy, intuitive and reliable.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Usability”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Accepted

ID US_04

Title Comprehensive Platform and API Documentation

Short description The semantic aggregate manager and API documentation should be

available, comprehensive and consistent with current functionality.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Usability”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Accepted

Reliability

ID REL_01

Title Reliable Service Infrastructure

Short description Ensure that the semantic aggregate manager and the relevant services are

available at all times.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 88 of 91

Type “Reliability”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Accepted

ID REL_02

Title Reliable data, context and content

Short description Ensure that context information is as accurate as possible.

Relevant Use

Case(s)

This requirement is implied in most use cases where user actors are

involved.

Type “Reliability”

Priority Level Mandatory

Identified by

Partner(s)

NTUA

Status Accepted

11.4 REFERENCES

[BeCh14] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R.
Ricci, and I. Seskar. “GENI: A federated testbed for innovative network
experiments”. In: Computer Networks 61.3 (Mar. 2014), pp. 5–23.

[GaKa07] A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts. “Future internet research
and experimentation”. In: ACM SIGCOMM Computer Communication Review
37.3 (July 2007), p. 89.

[MoWi16] Morsey, M., Willner, A., Loughnane, R., Giatili, M., Papagianni, C., Baldin, I.,
Grosso, P. & Al-Hazmi, Y. (2016, April). DBcloud: Semantic Dataset for the
cloud. In Computer Communications Workshops (INFOCOM WKSHPS), 2016
IEEE Conference on (pp. 207-212). IEEE.

[PeSe09]
L. Peterson, S. Sevinc, J. Lepreau, and R. Ricci. Slice-based Federation
architecture. Draft version. GENI, 2009. U R L : http://groups.geni.net/
geni/wiki/SliceFedArch (cit. on p. 3).

[StDa15]
Stavropoulos, D., Dadoukis, A., Rakotoarivelo, T., Ott, M., Korakis, T., &
Tassiulas, L. (2015, May). Design, architecture and implementation of a
resource discovery, reservation and provisioning framework for testbeds. In
2015 13th International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt) (pp. 48-53). IEEE.

[WiPa15]
Willner, A., Papagianni, C. A., Giatili, M., Grosso, P., Morsey, M., Al-Hazmi, Y.,
& Baldin, I. (2015). The Open-Multinet Upper Ontology Towards the Semantic-
based Management of Federated Infrastructures. EAI Endorsed Trans. Scalable
Information Systems, 2(7), e2.

•

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 89 of 91

12 AUTOMATED OPENSTACK DEPLOYMENT

Because of a high user demand for an easy to set up Openstack environment, we made this
available through the ESpec (Experiment Specification). For more details, see
https://doc.ilabt.imec.be/ilabt/virtualwall/tutorials/openstack.html .

We use EnOS (https://enos.readthedocs.io/en/stable/) to setup OpenStack. EnOS targets

reproducible experiments which allows easy deployment, customization and benchmarking of
an OpenStack instance. We have integrated EnOS with the ESpec, so it can be launched
easily from jFed.

For the deployment of OpenStack, EnOS uses Kolla-Ansible

(https://docs.openstack.org/kolla-ansible/latest/user/quickstart.html) , which deploys the
various OpenStack-components in Docker-containers.

EnOS differentiates between 3 types of host machines:

• control: runs the OpenStack Dashboard (Horizon) and other administrative

components like APIs and databases.

• compute: hosts the VM’s that are deployed on the OpenStack instance

• network: hosts the Neutron-network agents along with haproxy/keepalived.

We provide an ESpec to setup OpenStack via EnOS, which is available

on https://gitlab.ilabt.imec.be/ilabt/enos-espec/ . You can instantiate an instance of this

ESpec via jFed.

You can run this ESpec in jFed v6 or higher.

You can edit the number of nodes that will be swapped in by editing the number of nodes in
the rspec.

To add a node:

• copy & paste an <node>-element

• change the client_id attribute of the <node>-element and it's child <interface>-elements

• change the ip_addresses in the <ip>-elements of the interfaces

• add a reference to the correct interface in both <link>-elements by adding a
<interface_ref>-element

Open and run this ESpec in jFed with the 'Open ESpec'-button. You can

https://doc.ilabt.imec.be/ilabt/virtualwall/tutorials/openstack.html
https://enos.readthedocs.io/en/stable/
https://gitlab.ilabt.imec.be/ilabt/enos-espec/
https://jfed.ilabt.imec.be/

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 90 of 91

Figure 38: jFed open ESpec button and direct git access

Deployment typically takes around 1 hour, and is performed from the folder /opt/enos on
node0. Interesting log-files can also be found in your home-directory.

While the experiment is swapping in, let’s have a look to the architecture:

D3.4: Developments for the second cycle

© 2017-2021 FED4FIRE+ Consortium Page 91 of 91

Figure 39: OpenStack setup

The testbed-link with the 192.168.0.0 subnet will be used as the private network for the
OpenStack components.

The testbed-link with the 192.168.10.0 subnet will be used as the public network for the

OpenStack VM’s. When assigning a floating IP from the public-subnet to a VM, all traffic from
that VM to the public internet will be pushed to that testbed-link.

The public-subnet of the public network in OpenStack is configured to hand out addresses

between 192.168.10.2 and 192.168.10.199. The gateway for this network

is 192.168.10.1 which is assigned to the network interface of node0 which is connected to this

testbed-link. node0 is configured by deployment/setup-os-nat.py to forward all traffic from this

interface to the interface of the control network (which has access to the public internet). This

also allows you to directly ping to OpenStack Server-instances with a “floating ip” attached to

them on that node.

https://doc.ilabt.imec.be/ilabt/_images/openstack-architecture1.png

