
Automatic Configuration of OpenFlow in Wireless
Mobile Ad hoc Networks

Sachin Sharma1, Avishek Nag2, Paul Stynes3, and Maziar Nekovee4

National College of Ireland1,3, University College Dublin2, and University of Sussex4

Email: sachin.sharma@ncirl.ie1, avishek.nag@ucd.ie2, pstynes@ncirl.ie3, M.Nekovee@sussex.ac.uk4

Abstract—A Mobile wireless Ad hoc NETwork (MANET) is a
decentralized wireless network in which mobile wireless nodes
either directly communicate with each other or communicate
via other wireless nodes in the network. In addition, OpenFlow
has disruptive potential in designing a flexible programmable
network which can foster innovation, reduce complexity and
deliver right economics. In recent years, there are significant
interests from research communities to deploy OpenFlow in
MANETs. This paper proposes a configuration method with
which OpenFlow can be deployed automatically in a MANET
without any manual configuration. The proposed configuration
method is tested in an emulated MANET created on the
Fed4FIRE testbed using Mininet-WiFi (an emulator for wireless
software-defined wireless networks). Experimentation includes
automatic configuration of OpenFlow in linear, sparse, and dense
mobile ad hoc networks. Results show the effectiveness of the
method in configuring OpenFlow in wireless mobile ad hoc
networks.

Index Terms—MANET, Software Defined Networking (SDN),
OpenFlow, OLSR, Open vSwitch

I. INTRODUCTION

A Wireless Mobile Ad hoc NETwork (MANET) is a col-
lection of mobile wireless nodes that dynamically form a
temporary network for communication without the use of a
fixed infrastructure (e.g., access points or base stations in
infrastructure wireless networks). MANETs are suitable for
situations where an infrastructure network is not available
or not trusted or costly to set up. Applications of MANETs
include network connectivity in remote areas or in disaster
scenarios such as earthquakes and tunnel accidents. Recent
applications of MANETs include WiFi mesh networks in the
context of Industry 4.0 and factory automation applications [1].
In addition, the integration of cloud and MANETs provides the
facilities to access the cloud inside a MANET of smart devices
where one or more smart devices may not have access to the
Internet [2], [3].

Software Defined Networking (SDN) is an approach that
facilitates network management by enabling programmatic
efficient network configuration. OpenFlow [4] is the de facto
SDN protocol for communication between the control and
data plane of network devices. OpenFlow allows taking one
control plane implementation and using it to steer different
data plane implementations. This is useful because it prevents
vendor lock-in (at least from the hardware side). In addition,
network nodes have become much simpler and inexpensive,
as they do not have to deal with complicated and distributed
information and decision-making (control plane). Moreover,

OpenFlow can accelerate innovations in network services, as
it is easier to prototype them in software.

OpenFlow is currently deployed in a wide range of networks
such as campus networks, data centre networks, wide-area
networks (e.g., Google B4), access networks (e.g., in access
points) and so on. Recently, there is significant interest from
research communities to apply OpenFlow in wireless MANET
[5], [6]. One of the major drivers of OpenFlow is its simplifica-
tion. It simplifies networks by allowing it to decouple complex
software from nodes and deploying it in external servers called
controllers.

One of the challenges behind deploying OpenFlow in wire-
less ad hoc networks is that available software for OpenFlow
such as Open vSwitch1 and ofsoftswitch132 are designed for
wired networks. They partially support wireless ad hoc MAC
(media access control) protocols [7]. In this paper, OpenFlow
is deployed using current OpenFlow software (i.e., Open
vSwitch) in wireless MANETs. In addition, this paper pro-
poses a method with which OpenFlow can be configured au-
tomatically in MANETs (without any manual configurations).
The challenge is that MANETs are very dynamic networks
where network nodes may move with a different speed and
direction. The speed and direction may also change at any
time. Therefore, without deploying OpenFlow automatically,
it may be difficult to implement MANETs with OpenFlow.

The idea is to deploy one or more controller nodes in
the wireless ad hoc networks and to control the network
from those controller nodes. In the proposed method, each
wireless node in an ad hoc network discovers the controller
automatically and establishes an OpenFlow session with it. We
consider an ad hoc network in which the controller is directly
reachable to only a few wireless nodes in the network. This
research addresses the challenge for nodes that can not directly
reach the controller and where they have to find a path to
the controller through other nodes (mobile) in the network.
This type of an ad hoc network is different from an in-band
OpenFlow network, discussed for wired networks in [8]. This
is because nodes in MANETs can move from one location to
another.

The proposed configuration method is tested in an emulated
MANET, created on the Fed4FIRE testbed. The MANET
is created using Mininet-WiFi, which is an emulator for

1http://www.openvswitch.org
2http://cpqd.github.io/ofsoftswitch13/



software-defined wireless networks. Experimentation includes
automatic configuration of OpenFlow in linear, sparse, and
dense mobile ad hoc network. The results show that an
OpenFlow session can be established automatically with the
controller in minimal time. The results of mobility scenarios
show the effectiveness of the innovative configuration method
in re-establishing an OpenFlow session when wireless nodes or
the controller move from one location to another. In addition,
data traffic experiments were conducted, which measured the
performance of OpenFlow enabled ad hoc networks.

The remainder of this paper is organised as follows: Section
II describes problems with current OpenFlow software and the
proposed innovative automatic configuration method. Section
III provides the detail about emulations. The results are
provided in Section IV. Section V presents the related work
and finally, Section VI concludes the paper.

II. AUTOMATIC CONFIGURATION PROPOSAL

The method for automatic configuration may differ with
the types of OpenFlow nodes used in an ad hoc network.
There are two types of OpenFlow nodes available in the
market namely, Pure OpenFlow and Hybrid OpenFlow [9].
Pure OpenFlow nodes support only OpenFlow operations for
forwarding packets. Hybrid OpenFlow nodes support both
OpenFlow and traditional switching operations such as layer
2 switching and layer 3 routing for forwarding packets. This
research proposes to implement the automatic configuration
method in hybrid OpenFlow nodes where nodes implement
both traditional routing and OpenFlow protocols.

For the proposed method, each hybrid OpenFlow wireless
node contains two types of forwarding tables: (1) FlowTables
of an OpenFlow switch and (2) traditional routing table.
Data traffic is matched against the forwarding entries of the
FlowTables of OpenFlow switches. Control traffic (e.g., traffic
sent between the controller and OpenFlow nodes) is matched
against the routing entries of the routing table.

A. Problems and Solutions

The MAC addressing scheme of current OpenFlow software
such as Open vSwitch is based on the IEEE 802.3 standard.
The problem for MANETs is that wireless ad hoc nodes do
not support the IEEE 802.3 standard. However, they do support
the ad hoc mode of the IEEE 802.11 standard. Therefore, the
IEEE 802.3 frame (without transforming to the IEEE 802.11
frame) cannot be successfully transmitted or received over
the wireless link. This problem is extensively studied by M.
Rademacher et. al. in [7].

Currently, the following two options are explored to suc-
cessfully transmit (or receive) the frame generated by the
forwarding table of Open vSwitch on a wireless link: (1)
performing MAC rewriting according to the IEEE 802.11
standard before transmitting a packet on a wireless link [17].
(2) supporting the 4addr mode [7] on the wireless interface.
In the former case, an additional MAC rewriting component
is required for packet header modification. In the latter case,
the wireless interface driver will correctly replace the MAC

addresses of the IEEE 802.3 (Ethernet) frame with the IEEE
802.11 format. The problem is that not all wireless nodes
support the 4addr mode of the IEEE 802.11 standard.

This paper proposes to use a third option uses tunnels such
as GRE or VXLAN to successfully transmit (or receive) a
frame generated by the forwarding table of Open vSwitch
on a wireless link. VXLAN stands for Virtual eXtensible
Local Area Network and GRE stands for Generic Routing
Encapsulation. Using these tunnels, a GRE or VXLAN header
is inserted into an IEEE 802.3 packet coming from Open
vSwitch. The MAC addressing scheme of these GRE packets
depends on the underlying transmission medium (in this case
it is IEEE 802.11).

Current OpenFlow software such as Open vSwitch support
GRE and VXLAN tunnelling. Tunneling with Open vSwitch
allows a wireless node to encapsulate traffic coming from
Open vSwitch data-path (e.g., Ethernet traffic) with GRE or
VXLAN header to transport over a wireless link. In order
to create a GRE or VXLAN tunnel between a node and
its neighboring node, the IP address of the neighbor node
is required. In our automatic configuration method, the IP
address of the neighboring node is known from the neighbors
discovered by the routing protocol (see the next subsection).
This approach introduces an extra overhead of 38 bytes in
case of GRE in each hop. The 38 bytes comprises of 4 bytes
for the GRE tag, 20 bytes for the IP header and 14 bytes for
the Ethernet header per packet. More information on creating
GRE or VXLAN tunnels using OpenvSwitch can be found at
[11].

In the proposed method, data traffic follows the path through
the tunnels, which are established to send (or receive) the
traffic matched through the FlowTable of OpenFlow. However,
control traffic is sent as usual, and not through the tunnels.

B. Assumptions, Requirements and Adapted Solutions

1. Controller
2. Traditional 

Routing Protocol

1. Traditional 
Routing Protocol 
(e.g., OLSR)

2. OVS-DB Server

Wireless 
Link

1. Address Automatic 
Configuration Protocol

2. Traditional Routing 
Protocol

3. Tunnel Agent
4. OVS-DB Client
5. Transport Layer Protocol
6. OpenFlow Protocol

(S1)

(S2)

(S4)

(S3)

(O)

(C)

Fig. 1. A Wireless Ad hoc Network. S1, S2, S3, S4 are wireless network
nodes, C is the controller and O is the OVS-DB server

It is assumed that wireless nodes in the considered wireless
ad hoc network are connected (see Fig. 1). This means that
each wireless node is reachable to all other nodes in the
network either directly or via other nodes in the network
(see S1, S2, S3, S4 in Fig. 1). Only a few nodes are directly
reachable to the controller (see node S3 in Fig. 1).



In the proposed automatic configuration method, each wire-
less node establishes an OpenFlow session with the con-
troller on the top of a transport layer session (without any
manual configuration). Each node establishes tunnels with its
direct neighbour nodes to transmit or receive data traffic (i.e.,
matched against the FlowTables of OpenFlow wireless nodes).
In order to implement the proposed automatic configuration
method, we frame the following requirements:

1) The wireless node needs to configure a unique IP address
to itself.

2) The wireless node needs to know the IP address of
each of its neighbour nodes in order to create GRE or
VXLAN tunnels between the node and neighbour nodes.

3) The wireless node needs to configure tunnels with its
direct neighbours.

4) The wireless node needs to know the IP address and
transport layer parameters such as the port of the con-
troller.

5) The wireless node needs to know a path to the controller.
The path may be through other nodes in the network,
see Fig. 1.

The first requirement is solved by running an address auto-
configuration protocol in each node [19]. Using the auto-
configuration protocol, each node gets an IP address without
running the DHCP (Dynamic Host Configuration Protocol)
server in the network. For the second requirement, each node
runs a traditional routing protocol in the network. An example
of a traditional routing protocol is the OLSR-Optimized Link
State Routing. For the third requirement, a tunnel agent is
executed in each node. This tunnel agent creates a tunnel such
as GRE or VXLAN with a neighbour node when the routing
protocol discovers the neighbour. In addition to creating a new
tunnel, the tunnel agent deletes an old tunnel with a neighbour
which is no longer the neighbour of the node as detected by
the routing protocol.

For the fourth requirement, OVS-DB (Open vSwitch
Database management) server (RFC 7047) is deployed in the
network (see Fig. 1) and an OVS-DB client is ran in each
wireless node. Like the controller node, this server is also
reachable to a few wireless nodes in the network (see S4 in
Fig 1). The OVS-DB server contains information about the
controller node such as the controller IP address and other
transport layer parameters. The OVS-DB server configures this
information in each node by communicating with the OVS-
DB client using the OVS-DB protocol. Running the routing
protocol in the controller node fulfills the fifth requirement.
Therefore, each node knows a path to the controller through
the routing protocol.

C. Proposed Automatic Configuration Method

The proposed automatic configuration is described using
one controller in the network (Fig. 1). However, the explana-
tion will be similar for the network where there are more than
one controllers in the network. Placement of the controllers is
another problem in a wireless ad hoc network. However, this
problem is not investigated in this paper.

Fig. 1 shows the network of four wireless nodes
(S1, S2, S3, S4), an OVS-DB server and controller. Each wire-
less node (S1, S2, S3, S4) runs the following protocol stack:
(1) an address auto configuration protocol [19], (2) traditional
routing (e.g., OLSR), (3) the tunnel agent, (4) the OVS-DB
client, (5) a transport layer protocol, and (6) the OpenFlow
protocol. The OVS-DB server and controller also run the
routing protocol.

1) Initial Setup: Each network wireless node
(S1, S2, S3, S4) gets an IP address using an address
auto-configuration protocol. As each node also runs a routing
protocol, a node gets the information about a neighbour
node (e.g., IP address), once the routing protocol discovers
it. On reception of neighbour information, the tunnel agent
running on the node creates a tunnel between the node and
a discovered neighbour. The OVS-DB server configures the
controller information (the controller IP address and transport
layer parameters) in a wireless node, once the routing protocol
running on the OVS-DB server discovers the wireless node
in the network. A path between the OVS-DB server and the
discovered wireless node is decided by the routing protocol.

Once a wireless node (S1, S2, S3, S4) knows the IP address
of the controller (from the OVS-DB server), it runs ARP to
know the MAC address of the controller. The ARP messages
follow a path to the controller, decided by the routing protocol.
After knowing the MAC address of the controller (using ARP),
the wireless node establishes a transport layer session with
the controller. The path for establishing the transport layer
session is also given by the routing protocol. In the next step,
the wireless node (S1, S2, S3, S4) establishes an OpenFlow
session with the controller (using the same path used by the
transport layer protocol).

2) Movement Scenario: Wireless nodes (S1, S2, S3, S4)
including the controller and OVS-DB server may become
unreachable with their neighbour nodes (discovered previously
by the routing protocol) as they move from one location to
another in a MANET. When the path between the controller (or
the OVS-DB server) and a wireless node contains an unreach-
able neighbour, the communication between the controller (or
the OVS-DB server) and the wireless node does not work
until a new valid path (discovered by the routing protocol)
is established in the network. In case the new valid path is
established before the transport or OpenFlow layer (note that
the OpenFlow layer is on the top of the transport layer) detects
a communication failure, the previously established OpenFlow
session with the node does not break and communication
between the controller and the node starts to work again after
the correct routing entries (of a valid path) are inserted in the
network. Moreover, if the transport or OpenFlow layer detects
a communication failure before the new valid path is inserted
into the network, the previously established OpenFlow session
between the node and the controller breaks and the new session
is established when the correct routing entries (to reach the
controller) are established in the network.

In addition to the above changes, when the routing pro-
tocol running on a wireless node (S1, S2, S3, S4) detects



an unreachable neighbour, the tunnel agent (running on the
same node) deletes the tunnel (GRE or VXLAN) with the
unreachable neighbour. When the routing protocol detects a
new neighbour, the tunnel agent creates a tunnel with that
neighbour. Moreover, the IP address of a wireless node can
also change when moving from one location to another [19].
In this case, the previously established OpenFlow session
with the controller is broken and a new OpenFlow session
is established.

If more than one controller is used to control the network
(not shown in Fig. 1), the OVS-DB server can update the node
with the correct controller information when the controller
information changes. This may be due to change in the
location of a node or the controller. If the controller informa-
tion changes, the node breaks the old OpenFlow session and
establishes a new OpenFlow session with the new controller.
A path to the new controller is decided by the routing protocol.
Note that this is the responsibility of the OVS-DB server that
which controller will be assigned to a node and is out of scope
for this work.

III. EMULATION SCENARIO

The emulations are performed on a node of the virtual
wall testbed facility at IMEC, Gent, Belgium, provided by the
Fed4Fire testbeds facility3. A pcgen04 node is chosen for the
emulation of a wireless ad hoc network. This node has 8 CPU
cores of Intel E5-2650v2 processor with 2.6 GHz speed, 48GB
RAM and 1x 250GB hard disk. Hyper-threading is enabled in
this node. A single physical CPU core with hyper-threading in
this node appears as four logical CPUs to an operating system.
Therefore, there are 32 logical CPUs in this node.

Mininet-WiFi4 is deployed in the above pcgen04 node to
run wireless ad hoc network emulations. Mininet-WiFi is a
fork of the Mininet SDN network emulator5 and extends
it by adding virtualized wireless stations and access points
based on the standard Linux wireless drivers and the IEEE
802.11 wireless simulation (i.e., mac80211 hwsim) driver.
The ubuntu 16.04 LTS image (available through the Fed4Fire
interface) is deployed on a pcgen04 node (n064-10) and then a
Mininet-WiFi is ran on this node. An Open vSwitch6 version
2.5.5 is installed in the node. Open vSwitch already has the
OVS-DB protocol implemented in its software. The OVS-DB
protocol is run on the top of the TCP (transmission control
protocol). In addition, the POX controller7 (version 0.5.0) is
used for OpenFlow emulations in this experiments. In this
emulation, one controller is used for emulation and the OVS-
DB server is also located at the controller node. For assigning
the IP addresses to each wireless node, we used the automatic
IP assignment method available in Mininet-WiFi.

OpenFlow checks the aliveness of its session by sending
a probe message (i.e., ECHO REQUEST) and receiving a

3https://www.fed4fire.eu/testbeds/virtual-wall/
4https://github.com/intrig-unicamp/mininet-wifi
5http://mininet.org/
6https://www.openvswitch.org/
7https://github.com/noxrepo/pox

reply (i.e., ECHO REPLY). If a reply is not received after
sending three requests, a failure is declared and the session is
broken. In this experiments, the ECHO REQUEST interval is
5 seconds. Therefore, the OpenFlow session failure is detected
in about 15 seconds. TCP is used as a transport layer protocol
for communication between wireless OpenFlow ad hoc nodes
and the controller. In addition, OLSR is used as a routing
protocol in this network. OLSR version 0.6.88 is used for
this emulation. The default values of emission parameters of
OLSR given by its version 0.6.8 are used. The following
are the default values: the hello interval is 2 seconds, the
Traffic Control (TC) send interval is 5 seconds, and the host
and network association (HNA) interval is 5 seconds. The
neighbour hold time, TC hold time and HNA hold time are
10 times the hello interval, 60 times the TC send interval and
60 times the HNA interval, respectively.

A separate CPU is dedicated to each wireless node in the
network including the controller and the OVS-DB server. The
following types of ad hoc networks are emulated: (1) linear,
(2) sparse and (3) dense network. In the linear network, a
linear network is formed using 20 wireless nodes. The distance
between a node and its neighbour is 40 meters and the radio
range of each node is 74 meters. Each node contains one
wireless interface (wlan0) which supports the ad hoc mode
of IEEE 802.11. The transmission power is 14 dBm and
the frequency is 2.412 GHz. The controller and the OVS-
DB server is ran at the last node of the network and the
configuration time is calculated.

In the sparse ad hoc network, 20 wireless nodes are de-
ployed randomly over 250× 250 meter square area. However,
in the dense ad hoc network, 20 wireless nodes are deployed
randomly over 125× 125 meter square. All other parameters
like radio range, transmission power and frequency are the
same as the linear network. The controller and the OVS-DB
server are run at one of the wireless nodes in the sparse
and dense network. The automatic configuration time of these
networks is then compared with the results gathered through
the linear network.In addition, to show the effect of movement,
the nodes in the network are moved to a different location and
the controller re-connection time is calculated. Furthermore,
the data traffic experiments are performed in the considered
ad hoc network where the performance (in terms of the end-
end delay) is calculated. This performance is then compared
with the ad hoc network in which OpenFlow is not deployed.

IV. EMULATION RESULTS

OpenFlow session establishment time (in bootstrapping),
OpenFlow reestablishment time (in mobility scenarios) and
data traffic performance results are presented in this section.

Fig. 2 shows the time taken by a wireless OpenFlow node to
establish an OpenFlow session with the controller after it boots
up. This time is called the OpenFlow session establishment
time. This time includes: (1) the time to run Open vSwitch
software (2) the time to run the OVS-DB client, (3) the time

8http://www.olsr.org/?q=download



0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

O
pe

nF
lo

w
Se

ss
io

n 
E

st
ab

li
sh

m
en

t T
im

e 
(s

ec
)

Minimum Number of Hops away from the Controller

Linear Network Sparse Network Dense Network

Fig. 2. OpenFlow Session Establishment Time. Error bars show the minimum,
average and the maximum values.

to run OLSR (including the OLSR configuration time), (4)
the time to run the OVS-DB server, (5) the time to configure
required parameters for an OpenFlow session (e.g., controller
IP address) and (6) the time to establish an OpenFlow session
after getting the controller parameters.

This time is calculated for the nodes which are at a certain
hop (hop 1 to hop 19 in Fig. 2) away from the controller.
This time is calculated for different types of topologies: linear,
sparse and dense. For the topologies where there is no node
at a certain hop from the controller, no bar is shown in Fig 2.
For example, there is no bar in the sparse network in Fig. 2
after hop 4 and there is no bar in the dense network after hop
2. As in the sparse and dense network, there may be many
nodes at a certain hop from the controller, the average value
of the OpenFlow session establishment time is calculated. The
results are calculated 50 times and the minimum, average and
maximum values are shown in Fig. 2.

Fig. 2 shows that 1 hop nodes from the controller take a
significantly long time (approximately 10 to 15 seconds) to
establish an OpenFlow session with the controller. After 1 hop,
the OpenFlow establishment time increases either linearly or
non-linearly as shown in Fig. 2. In Fig. 2, for some nodes (e.g,
hop 1 to hop 4 and hop 17 to hop 19 in the linear network)
there does not appear to be a linear increase in the OpenFlow
session establishment time with an increase in the number of
hops from the controller. This is because even when the OVS-
DB server discovers a node in the network (through the routing
protocol), there may be a case that the routing entries along
the path to the node are not yet established in the network to
forward traffic. The OVS-DB server sends a TCP Syn message
to establish the TCP session when it discovers a new node in
the network. The TCP Syn message reaches to the node if all
the nodes along the path to the node have the routing entries to
reach the node. In the case where the TCP Syn message does
not reach the node, the OVS-DB server backoffs for 1 second
and again sends a TCP Syn after backoff. However, if the
TCP Syn again does not reach the node, it follows exponential
backoffs. In the exponential backoff, the backoff doubles on
each unsuccessful transmission. This is the reason that for
some hops we do not see a linear relationship between the

number hops and the OpenFlow session establishment time.
The OpenFlow establishment time in the dense network

is longer than in the sparse network. This is because in the
dense network, a greater number of nodes are available at a
certain hop from the controller and therefore, a large number of
OpenFlow session paths need to be established for the certain
hop. However, the OpenFlow establishment time is shorter in
the linear network than in the sparse network. The reason is
the same as explained before for the dense and sparse network.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
he

 C
on

tr
ol

le
r 

R
e-

co
nn

ec
ti

on
 T

im
e 

(S
ec

)

Minimum Number of Hops away from the Controller

Linear Network Sparse Network Dense Network

Fig. 3. Controller Re-connection Time. Error bars show the minimum, average
and the maximum values

Fig. 3 shows the time to reconnect the controller when one
or more nodes in a path to the controller move to another
location. Like Fig. 2, the results are calculated 50 times and
the minimum, average and maximum values are shown in Fig.
3. Like Fig. 2, no bar is shown in Fig 3 for the topologies
where there is no node at a certain hop from the controller.
OpenFlow in this experiments detects a failure (due to a node
in a path to the controller moves to another location) after
15 seconds and then it breaks the session with the controller.
This automatically breaks the TCP session. The node then also
tries to reestablish the TCP session by sending a TCP syn and
performs backoff (as described in the previous paragraph). In
this case, OLSR detects the failure after 20 seconds and tries
to find a new path to the controller. Therefore, the controller
re-connection time in Fig. 3 is more than 20 seconds.

In this mobility scenarios, all the nodes move from one
location to another. Therefore, all the nodes along a path to
the controller have to establish new routing entries to reach
the controller or other nodes in the network. If a node reaches
a location which is a few hops away from the controller, the
path is established in a short time. However, if the location is
very far from the controller, the path is established in a long
time, resulting in an increase in the controller re-connection
time.

Fig. 4 shows the result of data traffic experiments in which
data traffic is sent from a node to each and every other node
in the network. UDP packets are sent at the interval of 100
milliseconds over 2 minutes and the minimum, average and
maximum value of the end-to-end delay is calculated. The
packet size was 1000 bytes and the linear network was consid-
ered for emulations. No separate queues are implemented for
data and control traffic. They share the same channel. After



0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E
nd

-t
o-

E
nd

 D
el

ay
 (

m
s)

Number of Hops

With OpenFlow Without OpenFlow

Fig. 4. Data Traffic Performance. Error bars show the minimum, average and
the maximum values

the hello interval each node has to send hello messages to
its neighbour nodes and then network information has to be
broadcasted over the network. It was observed that this has
an impact on data traffic performance. In addition, the first
packet always takes a long time to reach the destination node,
as nodes have to run ARP to know the MAC address of the
destination node before sending the first packet. This is the
reason for the variation in the maximum and minimum value
of the end-to-end delay in these experiments.

Fig. 4 shows that the average value of end-to-end delay
increases as the number of hops between the source and
destination increases. This is because data traffic has to travel
more number of hops to reach the destination. In addition,
it shows that the end-to-end delay is longer for a network
deploying OpenFlow than the network in which OpenFlow is
not deployed. This is because tunnelling is used to transport
data traffic generated using Open vSwitch software (following
the IEEE 802.3 standard) on a wireless link. The performance
degradation using OpenFlow happened because we used tun-
nelling in nodes to transport OpenFlow traffic on wireless
links. The average value of the performance degradation (in
form of the average delay) is low as 1 ms (see Fig. 4) when
the number of hops travelled is small (i.e., < 6).

V. RELATED WORK

OpenFlow is a communication protocol that provides access
to the forwarding plane of a network switch or router over the
network [9]. One of the first deployments of OpenFlow in
wireless networks was at the Stanford campus network [10]
where OpenFlow was deployed at WIFI-Acess points (AP) and
WiMax base stations. In [12], a practical implementation of
an SDN (Software Defined Networking) MANET testbed was
provided. This work designs a testbed that has the advantages
of device-to-device data communication and simplicity of
network configuration using a centralized controller. In [13],
an attempt was made to implement OpenFlow over a wireless
mobile ad hoc network of smartphones. It is shown that the
development time and complexity of an application can be
significantly reduced by using OpenFlow in a wireless ad hoc
network.

Several advantages of SDN/OpenFlow in tactical wireless
ad hoc networks are discussed in [14]. It is shown that using
SDN/OpenFlow, it is relatively simple to configure and re-
configure wireless ad hoc nodes based on dynamic policies,
mission-critical objectives and battlefield condition changes.
A detailed performance analysis of SDN and OpenFlow are
presented in [15] for wireless networks through simulation
results using an OMNeT++ network simulator. The authors
in [16] addresses the issues of low transfer rate and small
coverage of meshed ad hoc networks by using a combination
of BATMAN (Better Approach To Mobile Ad-hoc Network)
routing protocol, Open vSwitch, and Dijkstra algorithm. In
[18], the Parallel Redundancy Protocol (PRP) is used using
OpenFlow/SDN paradigm in Wireless Local Area Networks
to reduce the fail-over time. The main critique of the existing
work is that they do not discuss the automatic deployment of
OpenFlow without any manual configuration in the context of
MANET or any other wireless networks.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an innovative method that can automat-
ically configure OpenFlow in wireless mobile ad hoc networks.
The method can be implemented in hybrid OpenFlow nodes
which support both the traditional routing and OpenFlow
protocol. This research is the first work on the automatic
configuration of OpenFlow in wireless ad hoc networks.

Extensive experiments were performed on different types of
wireless ad hoc networks (linear, sparse and dense) generated
on the Fed4Fire testbed using Mininet-WiFi. The results show
that the proposed innovative method is able to automatically
configure a wireless ad hoc network of 20 nodes in less than
40 seconds. In addition, mobility scenarios were considered
in which each node (including the controller) moves from one
location to another. The controller re-connection time was cal-
culated in these scenarios. Moreover, data traffic experiments
were performed. The data traffic experiments show that the
performance of the network deploying OpenFlow is lower
than the network in which OpenFlow is not deployed. This is
because tunnelling was used to transport data traffic generated
using OpenFlow software (following the IEEE 802.3 standard)
on a wireless link. Future work could focus on decreasing this
performance degradation by possibly testing with the other two
options discussed in Section II-A, in this current framework.

Based on the presented emulation results, future work
can involve applying the innovative automatic configuration
method to production networks. However, to improve the
accuracy of results, experiments can also be performed on
real environment testbeds [20] such as w-iLab.t facility and
IRISH testbed facility at the Fed4Fire testbed where each ad
hoc node (including the controller and OVS-DB server) is a
wireless node (instead of a node generated by Mininet-WiFi
software). A part of this work is lively demonstrated using a
portable testbed (two laptops) at [21].

Security issues of OpenFlow in a wireless ad hoc network
have not been explored in this research. Many of security
issues and their solutions using SDN-MANET are explored



in [22]. Future work may explore the security space of
OpenFlow-based MANETs using the concepts of Blockchain.

ACKNOWLEDGEMENT

Authors would like to thank the team of Fed4Fire testbed,
Gent, Belgium for providing the experiment facility and sup-
port to carry out the experiments performed in this paper.

REFERENCES

[1] T. Wang, J. Liu, L. Cheng, H. Xiao, “Robust collaborative mesh
networking with large-scale distributed wireless heterogeneous terminals
in industrial cyber-physical systems,” International Journal of Distributed
Sensor Networks, Vol. 13(9), 1-21, 2017

[2] T. Alam, M. Benaida, “The Role of Cloud-MANET Framework in the
Internet of Things (IoT), ” International Journal of Online Engineering,
Vol. 14(12), pp. 97-111 -2018

[3] Zhou, B., Dastjerdi, A.V., Calheiros, R.N., Srirama, S.N. and Buyya,
R., “A context sensitive offloading scheme for mobile cloud computing
service,” 2015 IEEE 8th International Conference in Cloud Computing”,
pp. 869-876, 2015.

[4] N. McKeown, T. Anderson, H. Balakrishnan, “OpenFlow: Enabling
Innovation in Campus Networks, SIGCOMM Comput. Commun. Rev,
2008.

[5] K. Poularakis, G. Iosifidis and L. Tassiulas, “SDN-Enabled Tactical Ad
Hoc Networks: Extending Programmable Control to the Edge,” in IEEE
Communications Magazine, vol. 56, no. 7, pp. 132-138, July 2018.

[6] S. Hadzic, C. Niephaus, O. G. Aliu, G. Ghinea, and M. Kretschmer,
“Wireless Back-haul: a software defined network enabled wireless Back-
haul network architecture for future 5G networks, IET Networks, vol.
4, no. 6, Nov. 2015, pp. 287295.

[7] M. Rademacher, F. Siebertz, M. Schlebusch and K. Jonas, “Experiments
with OpenFlow and IEEE802.11 Point-to-Point Links in a WMN”,
Twelfth International Conference on Wireless and Mobile Communi-
cations, 2016.

[8] S. Sharma, D. Staessens, D. Colle, M. Pickavet and P. Demeester, “In-
band control, queuing, and failure recovery functionalities for openflow,”
IEEE Network, vol. 30, no. 1, pp. 106-112, 2016.

[9] OpenFlow Specification, “SDN Technical Specifications”.
[Online]. Available:https://www.opennetworking.org/software-defined-
standards/specifications/

[10] K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan, N.
Handigol, N. McKeown, and G. Parulkar, “Blueprint for Introducing
Innovation into Wireless Mobile Networks, in ACM SIGCOMM Work-
shop on Virtualized Infrastructure Systems and Architectures, 2010, pp.
2532.

[11] Open vSwitch Tunnels: http://docs.openvswitch.org/en/latest/howto/tunneling/
[12] H. C. Yu, G. Quer and R. R. Rao, “Wireless SDN mobile ad hoc

network: From theory to practice,” 2017 IEEE International Conference
on Communications (ICC), Paris, 2017, pp. 1-7.

[13] P. Baskett, Y. Shang, W. Zeng and B. Guttersohn, “SDNAN: Software-
defined networking in ad hoc networks of smartphones,” 2013 IEEE
10th Consumer Communications and Networking Conference (CCNC),
Las Vegas, NV, 2013, pp. 861-862.

[14] K. Poularakis, G. Iosifidis and L. Tassiulas, “SDN-Enabled Tactical Ad
Hoc Networks: Extending Programmable Control to the Edge,” in IEEE
Communications Magazine, vol. 56, no. 7, pp. 132-138, July 2018.

[15] G. Araniti, J. Cosmas, A. Iera, A. Molinaro, R. Morabito and A.
Orsino, “OpenFlow over wireless networks: Performance analysis,” 2014
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting, Beijing, 2014, pp. 1-5.

[16] S. Koh, J. Kim and S. Lee, “A proposal of OpenFlow controller to
improve transfer rate in mesh network,” 2017 International Conference
on Information Networking (ICOIN), Da Nang, 2017, pp. 509-511.

[17] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless Mesh
Software Defined Networks (wmSDN), in Wireless and Mobile Com-
puting, Networking and Communications (WiMob), 2013 IEEE 9th
International Conference on, Oct. 2013, pp. 8995.

[18] E. Molina, E. Jacob, A. Astarloa, “Using OpenFlow to control redundant
paths in wireless networks”, Network Protocols and Algorithms, Vol.
8(1), 2016

[19] A. Munjal, “Address Auto-Configuration Protocols and their message
complexity in Mobile Adhoc Networks,” PhD Dissertation, IIT Kanpur,
2015

[20] M.Berman et. al., “Future Internets Escape the Simulator”, Communi-
cations of the ACM, Vol. 58(6), pp. 78-89, 2015

[21] S. Sharma, M. Nekovee, “Demo Abstract: A demonstration of auto-
matic configuration of OpenFlow in wireless ad hoc networks”, IEEE
INFOCOM, Demonstration Session, April 2019

[22] M. Alqallaf, “Software Defined Secure Ad Hoc Wireless Networks,”
PhD Dissertation, Wright State University, 2016


