
Analyzing the impact of VIM systems over the
MEC management and orchestration in vehicular

communications
Nina Slamnik-Kriještorac∗, Michael Peeters†, Steven Latré∗, and Johann M. Marquez-Barja∗

∗ University of Antwerp - imec, IDLab research group, Sint-Pietersvliet, 2000 Antwerp, Belgium.
E-mail: {name.surname}@uantwerpen.be

† imec, Antwerp, Belgium.
E-mail: michael.peeters@imec.be

Abstract—The combination of 5G and Multi-access Edge
Computing (MEC) technologies can bring significant benefits
to vehicular networks, providing means for achieving enhanced
Quality of Service (QoS), and Quality of Experience (QoE) of
wide variety of vehicular applications. Although beneficial in
terms of latency reduction, the edge of the architecture for
communication networks produces enormous heterogeneity of
network services and resources. This challenge becomes even
more severe when different administration domains are taken
into consideration. Thus, efficient network Management and
Orchestration (MANO) of network resources and services are
inevitable. As ETSI provided guidelines and standardization for
NFV MANO components, the MEC platform can be used to host
network services, while MANO systems are in charge of network
service management and orchestration. In this paper, we focus on
the specific impact that the Virtualized Infrastructure Manager
(VIM) has on the performance of the whole MANO system,
used for management and orchestration of MEC services and re-
sources in vehicular networks by enabling the on-demand service
instantiation, and termination teardown. In our testbed-based
evaluation, we measured the network service instantiation and
termination delays when evaluating: a) OpenStack and Amazon
Web Services (AWS) as VIMs for Open Source MANO (OSM),
and b) OpenStack and Docker in case of Open Baton. Such
performance analysis with a strong experimental component can
serve as a baseline for researchers and industry towards exploit-
ing the opportunities that existing MANO solutions provide.

Index Terms—MEC, NFV, VNF, MANO, edge and cloud
computing, orchestration, vehicular networks

I. INTRODUCTION AND MOTIVATION

Nowadays, network operators, automotive industry, and
service providers work closely together in order to provide a
fruitful variety of vehicular services to their users, promising
high levels of Quality of Service (QoS), which reflects on the
Quality of Experience (QoE). To cope with the heterogeneous
nature of network resources, technologies, vendors, as well as
high dynamicity in network traffic, the efforts are focused on
exploiting the synergy between technologies such as Software
Defined Networking (SDN), Network Function Virtualization
(NFV), and 5th generation of mobile communications (5G).
Such collaboration is essential to address latency requirements
in various vehicular applications, e.g, emergency electronic

Ve
hi

cl
es

R
A

N
Ed

ge M
A

N
O

sy
st

em
s

C
or

e 
ne

tw
or

k

V2N

Centralized
cloud

MEC server

V2N
V2N

V2V

V2V
V2N

VIMVNFM

NFVO

Centralized
cloud

VIMVNFM

NFVO

V2N

MEC server

Domain 1 Domain 2

Fig. 1: Management and Orchestration of MEC resources
and services in vehicular communications: 5G and

MEC-enhanced vehicular network

brake warning, lane change warning, traffic information sys-
tems, video streaming etc. [1–5].

One of the strategies to cope with latency constraints is
shifting cloud computing capabilities to the network edge (Fig.
1), thereby placing vehicular applications closer to the end-
users. Hence, Multi-access Edge Computing (MEC), supported
by SDN, NFV, and 5G, is recognized in research commu-
nity [1–6] for significant reductions of latency for vehicu-
lar services. However, MEC platforms are usually resource
constrained, and distinctive for wide resource and service
heterogeneity. To address these challenges, efficient network
management and orchestration that provide a fast reaction
to network changes are a must. In Fig. 1, the position of
NFV Management and Orchestration (MANO) systems in 5G-
enhanced vehicular networks illustrates their main goal, which
is to provide means for orchestration of resources and services



that are placed on top of the MEC platforms, in one or multiple
technological and administrative domains. Thus, in this paper
we study the performance of existing solutions for MANO in
MEC, inspecting the impact of the Virtualized Infrastructure
Manager (VIM), which is the management system for NFV
Infrastructure (NFVI) that is used for instantiation, operation,
and termination of network services. As ETSI NFV MANO
components, shown on the right side of the Fig. 2, manage
and orchestrate life-cycle of a particular network service, in
this paper we focus on VIM systems (black rectangle in
Fig. 2), and their impact on the performance of the whole
MANO system. Such an approach is significant for vehicular
communications since one of the first steps towards addressing
management and orchestration in realistic scenarios within
vehicular context is to assess the opportunities that existing
MANO platforms bring.

Our experimental setup includes two MANO platforms
under development, i.e., Open Source MANO (OSM) and
Open Baton, and different VIM environments that each of
these MANO platforms supports (Table I). Both OSM and
Open Baton are MANO solutions suitable for deployment
at the network edge, as a result of their full compliance to
the ETSI standardized framework [7], and their lightweight
installation [8]. To evaluate the impact of VIM on the indi-
vidual performance of both tools, we conduct two separate
experiments (one per each MANO tool). These two tools
do not support the same set of VIM drivers, and a fair
environment for experimentation must be ensured.

The performance is measured in terms of the time needed
for a service to be instantiated on top of the MEC platforms,
i.e., Overall Instantiation Delay (OID), and time needed to
release resources when terminating the service, i.e., Overall
Termination Delay (OTD). Due to the programmable nature
of vehicular applications nowadays, consisting of multiple
Virtual Network Functions (VNFs) that can be realized as
Virtual Machines (VMs) or containers [9], linked into Service
Function Chains (SFCs), MANO systems can proactively
make decisions to instantiate additional VNFs, or the whole
VNF chains (i.e., application instance), in order to meet QoS
and QoE requirements. Therefore, if the MANO system de-
cides that an immediate application instantiation will be more
efficient than scaling up or down existing application instances
in order to cope with network fluctuation, or increased service
demand, benchmarking instantiation and termination delays
plays a significant role. Therefore, the experiment consists of
two separate parts, each proceeding with the evaluation of time
taken for a network service to be instantiated or terminated,
executed by MANO platforms. We focus on the performance
of MANO systems (being bounded to their limitations in
operation), excluding the impact of network, and relying on
the benefits of application placement within MEC [10]. Thus,
measuring the delay at the user equipment is out of scope of
this paper.

The first experiment measures how fast OSM can instantiate
and terminate a network service, when OpenStack, and Ama-
zon Web Services (AWS) are VIM systems. Similarly, in the

virtualization

VNF
VNF VNF

VNF
VNF

services

virtualization

resources

VM VM container
container

VM
VIM

VNFM N
FVO

MANO

Fig. 2: ETSI NFV MANO components as a management and
orchestration entity for a MEC platform.

VIM environment
Open Baton OpenStack Docker
Open Source MANO (OSM) OpenStack AWS

TABLE I: Supported VIM environments in Open Baton and
OSM.

second experiment Open Baton is used as a MANO platform,
because it allows us to use Docker as a VIM, and to evaluate
the performance of MANO in case it instantiates services
as containers (Docker VIM), and VMs (OpenStack VIM). In
order to mimic the realistic features of edge computing, we
utilized the testbed environment for the case of OpenStack
VIM, and Docker VIM, while for AWS VIM we used a public
cloud. The aforementioned testbed environment is the high-
performance Virtual Wall1 testbed, located in Gent, Belgium.
Consisted of more than 400 bare metal and GPU servers,
Virtual Wall is a large-scale testbed for advanced networking,
distributed software, cloud, big data, and scalability research
and testing.

Going beyond a theoretical evaluation of both approaches,
we wish to provide both research and industry communities
with a realistic performance evaluation of such tools, and to
help them compare different platforms as well as impact of
VIM, as an unavoidable manager entity for the underlying
NFVI. Extending our research presented in [6], which reviews
the existing orchestration solutions based on their compliance
to ETSI, support for different VIMs and descriptor standards,
as well as their multi-domain capabilities, in this paper we
show the performance analysis for Open Baton, and OSM.

II. RELATED WORK

In order to design and develop real-time network services
capable to cope with stringent QoS and QoE requirements,
containers are usually deployed as an alternative to VMs, as
they usually demand low resource overhead, which makes
them suitable for deployments on the resource-constrained
network edge.

1Virtual Wall testbed: https://doc.ilabt.imec.be/ilabt/virtualwall/index.html



In their comparison between traditional VMs and containers,
Doan et. al. [11] show that containers outperform VMs in
terms of their suitability for MEC implementation, referring
to specific service migration scenarios. However, the results
provided by Salah et. al. [12] show that, although both de-
ployed on top of the AWS Elastic Compute Cloud (AWS EC2),
VM-based services outperform the container-based ones. This
proves that impact of VIM environment is not negligible, and
it has to be studied deeper. Therefore, we see the potential
of inspecting the type of VIM when approaching MANO of
network services in highly dynamic and resource-constrained
platforms such as MEC.

Furthermore, there are some efforts to evaluate the overall
performance of existing MANO systems, but without focusing
on the impact of specific MANO element in the architecture
(Fig. 2). For instance, the approaches presented in [8] provide a
valuable but yet only theoretical overview of the orchestration
solutions. One of the rare attempts to evaluate existing MANO
platforms is introduced by Peuster et. al. [13], emulating
the Points of Presence (PoPs) that need to be orchestrated.
The authors used two different version of OSM, with no
comparison of this tool to the other tools, and no discussion
on how VIM influences the performance of OSM is provided.

Recently, there have been also some efforts to benchmark
different VIM environments, based on the self-generated per-
formance reports. In their approach to measure the perfor-
mance and VM instantiation times of OpenStack and Nomad,
Ventre et. al. present the performance measurements of both
VIM solutions, focusing on the tunning of performance for
each of the VIMs, and however, not focusing on the evalu-
ating the impact each VIM has on the system, nor making
the comparison between them. Moreover, Sechkova et. al.
[14] focus on the VIM, measuring the time overhead that
VMs provisioning brings to the system. For this evaluation,
Sechkova et. al. [14] conducted a comparative analysis of two
open-source VIMs, i.e., OpenStack and OpenVIM.

To the best of our knowledge, our approach is the first which
presents the evaluation of different VIM environments used as
a NFVI management system, thereby measuring the impact of
VIM on the performance of particular MANO platform, within
a real testbed environment.

III. MANAGEMENT AND ORCHESTRATION SYSTEMS

The ETSI MEC architectural framework consists of man-
agement and orchestration elements, which are interconnected
in order to enable hosting of applications and services on
top of the MEC platform [7]. As the left side of Fig. 2
depicts, different MEC platforms include various virtualized
and physical resources, plenty of services, and applications
developed and maintained by different stakeholders. Such het-
erogeneity inevitably requires the standardization guidelines
and recommendations, in order to increase the compatibility
of such platform to various NFV environments.

The components of ETSI NFV MEC architecture which
represent a so-called MANO, aiming to manage and orches-
trate resources and services within MEC, are illustrated on

the right side of Fig. 2. Thus, MANO incorporates NFV
Orchestrator (NFVO), VNF Manager (VNFM), and VIM.
In the specific context for heterogeneous MEC platforms,
MANO is in charge of managing resources and all service
instances which are running on top of these platforms. Based
on the fluctuating nature of vehicular network traffic, and
therefore high dynamicity in service requests, MANO takes
care of allocating more resources for services, scaling VNFs,
and releasing unnecessary resources by terminating ongoing
services.

Following the orchestration decisions and instructions pro-
vided by NFVO, VNFM manages all network service instances
(i.e., VNFs) running in MEC, while VIM represents the
management system for NFVI that is used for instantiation
and operation of network service. To be more specific, the
roles of VIM are: a) performing allocation, management, and
releasing of virtualized resources, b) preparing the underlying
NFVI to run software images as a base for the required VNFs,
and c) collecting fault reports and performance measurements
about virtualized resources.

a) Open Baton: OpenBaton is a research MANO plat-
form, developed by Fraunhofer FOKUS and Technical Univer-
sity of Berlin, which is aligned to the ETSI standardization. Its
primary focus is on improving the performance and security
of the overall infrastructure by merging the underlying in-
frastructures, software architectures, networking, management,
and orchestration [8].

b) Open Source MANO: OSM is an ETSI-hosted MANO
platform for automating end-to-end service deployment and
orchestration [8]. It integrates several open source software
initiatives to deliver ETSI NFV MANO functionalities: 1.
Riftware is used as a network service orchestrator, 2. Open-
MANO as resource orchestrator, and 3. Juju Server as VNFM
[8]. The release five, which we used for experimentation,
provides support to multiple VIM environments. Those tested
in our experiment are shown in Table I.

IV. EXPERIMENTATION SETUP

A. Virtualized Infrastructure Managers

Here we briefly provide an overview of OpenStack2, AWS3,
and Docker4, and particular settings that allow them to gen-
erate a corresponding VIM environment for MANO systems
presented in the previous section. To run a service on top
of OpenStack, the required image should be uploaded via
Glance service. The name of the image is then used in
VNF Descriptor (VNFD), and Network Service Descriptor
(NSD), so when a request for instantiation comes from MANO
to Openstack, image service retrieves the necessary image
for VM instantiation. Furthermore, Nova and Neutron are
services that provide compute and network resources based
on the flavors and network specifications, that are also stated
within VNFD and NSD. In order to register AWS as a VIM

2OpenStack documentation: https://www.openstack.org/
3AWS documentation: https://docs.aws.amazon.com/
4Docker documentation: https://docs.docker.com/



VI
M

en
vi

ro
nm

en
t

N
FV

O
 +

 V
N

FM

Testbed

Experiment 2

Testbed

Experiment 1

VNF

Public cloud

VNF

VNF

Testbed Testbed

VI
M

en
vi

ro
nm

en
t

N
FV

O
 +

 V
N

FM

Fig. 3: Experimentation setup on the Virtual Wall testbed,
and the public cloud.

for MANO, we needed access and security keys for our
account, flavor of instances that will be instantiated, as well
as a corresponding availability zone. Furthermore, to run an
instance from MANO, it was necessary to specify a key pair,
a security group, a subnet, and a location of the image needed
for service instantiation. Finally, in our experimentation with
Docker as a VIM, for the purpose of running specific network
services, we created Docker images instead of creating VNFD,
and then used these custom images to generate NSD, and
to launch a network service. Therefore, network service is
instantiated as a container on top of the Docker machine in a
testbed environment.

B. Experimentation

For the purpose of inspecting the impact of VIM on the
performance of MANO systems, we created an experimental
setup that is illustrated in Fig. 3, including the Virtuall Wall
testbed, and a public cloud. We made sure that machines
selected for installation of Open Baton, OSM, OpenStack,
and Docker, meet their resource requirements. Therefore, the
capabilities of these machines are stated in Table II. The
performance we measured is described as the time needed for
a service to be instantiated, and terminated on top of the MEC
platforms (i.e., OID, and OTD, respectively), as shown in Fig.
4, which also provides the definition of OID, and OTD. Due to
the limitations imposed by release versions of MANO systems
that we utilized for the experimentation, run-time operations
such as on-demand service scaling are not supported, and yet
not measured. The experimentation consists of two separate
experiments (Fig. 3), both measuring the performance evalu-
ation of network service instantiation/termination, as follows:

• Experiment 1: setup combining OSM for orchestration
(MANO), and OpenStack and AWS for VIMs,

• Experiment 2: setup combining Open Baton for orches-
tration (MANO), and OpenStack and Docker for VIMs.

VIM

Allocates
resources

Runs
VM/container

NFV-LO

Service	
instance

Run

VNFM

1.	Instantiation	
request

	[VNFD,	NSD]

Preparing	VNFD
and	NSD

2.	Resource	allocation
	request

ACK

Config
ACK

1.	Termination	
request

	[Service	ID]
1.	Termination	

request
	[Service	ID]

Releases
resources

Terminate

ACKACK

O
ID

O
TD

Fig. 4: Measuring OID and OTD.

For both experiments, we tested the performance for three
chains of VNFs (SFCs), based on their complexity that is
expressed as a number of VNFs contained in the chain. In Fig-
ures 5, 6, 7, and 8, SFCs are: 1) SFC 1 containing one VNF, 2)
SFC 2 containing two VNFs, and 3) SFC 3 containing three
VNFs. The testbed configuration of OpenStack mimics the
realistic features of edge computing, while for AWS resources,
we used the public cloud. Furthermore, in the Experiment 1, in
order to create a fair environment for performance evaluation,
we instantiated the same types of service (i.e., the same NSD)
for both OpenStack and AWS. After instantiation, VMs with
Ubuntu operating system (i.e., image uploaded to OpenStack,
and present in us-east-1 zone in AWS EC2) were running on
top of the OpenStack, and AWS cloud. For the Experiment 2,
we measured the OID and OTD of Docker containers that are
deployed using the testbed resources, and of VMs of the same
functionality, instantiated on top of the OpenStack.

V. RESULTS AND DISCUSSION

Here we provide a thorough discussion on results shown in
Figures 5, 6, 7, and 8:

1) As shown in Fig. 5, AWS requires more time (s) to
instantiate a service. This is reasonable since it is a
public cloud, and all the internal procedures prior to



Capabilities
Component Machine

type RAM
(GB) CPU storage

(GB)

OpenStack pcgen4 48 2 x 8 core Intel E5
(2.6GHz) 250

OSM pcgen5 16 1 x 4 core Intel E3
(3.1GHz) 250

Open Baton
and Docker pcgen5 16 1 x 4 core Intel E3

(3.1GHz) 250

TABLE II: Characteristics of machines running on top of the
Virtual Wall testbed.

instantiation are hidden from the user. At the same
time, OpenStack provides a dedicated platform (i.e., a
private cloud) for user’s needs, and it is located at a
geographically suitable place for a MANO to orchestrate
it.

2) Although OpenStack outperforms AWS in terms of OID
(Fig. 5), there are configurations and custom installations
that need to be done prior to using OpenStack as a VIM,
and of course, custom machines are needed (Table II).

3) The more complex the service is, the higher OID and
OTD are for all VIMs (Figures 5, 6, 7, and 8). This
is somewhat expected, because each VNF, either it is a
container or VM-based, takes time for instantiation and
termination.

4) Interestingly, AWS needed less time to terminate more
complex network services (Fig. 6), i.e., services with
two and three VNFs. Thus, once instantiated and went
through security procedure, the resources needed for
network services can be released in a faster way.

5) Regarding configuration complexity, setting up AWS
as a VIM for OSM is not well documented, since
additional configurations have to be set-up on AWS as
well (security groups, virtual private cloud, and subnets,
have to be public in order to communicate with OSM).
Such public configuration is not necessary in OpenStack,
i.e., networks can be private.

6) Although more variety in flavors and images is present
in AWS, there is a certain limitation in creating custom
images and flavors based on the users’ needs, while in
OpenStack this task is straightforward.

For the edge network implementation in MEC, OSM performs
better with OpenStack than AWS, due to the reasons presented
above. However, the installation, configuration, and maintain-
ing of OpenStack are unavoidable, and must be done by e.g.,
network administrators.

As it can be seen in Fig. 7 and 8, Docker outperforms
OpenStack in terms of both OID and OTD. As containers are
a lightweight solution comparing to VMs that we instantiated
on top of the OpenStack, based on this result they prove to be
more suitable for implementation on the resource-constrained
network edge.

As it was already stated in the paper, in case MANO
systems decide to instantiate additional application instances
to meet QoS and QoE requirements, it is important to obtain
the values of OID and OTD. Concerning values of these

45

52
55

24 25
29

AWS OpenStack

SFC_1 SFC_2 SFC_3 SFC_1 SFC_2 SFC_3

0

20

40

Service Function Chain

O
ve

ra
ll 

in
st

an
tia

tio
n 

de
la

y 
(s

)

Fig. 5: Experiment 1: OID.

two metrics, expressed in the order of tens of seconds, we
see that neither OSM Release 6 nor Open Baton Release
6 are ready to be used in a real deployment for vehicular
networks, performing MANO of resources and services in
MEC platforms. Potentially, in order to decrease the impact
of such high delays on QoS, some predictions for service
instantiation can be done in order to preempt the users’ service
requests. The results show that the impact of VIM is essential
for the operation of MANO systems, since the same network
services operating on top of NFVI managed by different VIMs
take significantly more/less time to be instantiated/terminated.

As a part of our future work, we plan to extend the
experiment, creating more realistic network services which
are suitable for hosting at the network edge of vehicular
network. Although still unstable, the recently released ver-
sion of OSM provides support to container instantiation by
providing support to Kubernetes as a VIM. Since Kuber-
netes is a container orhcestration system that automates the
deployment of microservice applications, OSM can be used
as an orchestrator of life-cycle management operations for
microservices deployed on top of the MEC platforms. Thus,
interesting experimentation can be conducted in a setup that is
similar to one presented in our paper. Also, once when AWS is
supported and documented in Open Baton, we tend to compare
different MANO tools from the perspective of different VIM
environments.

VI. CONCLUSION

In this paper, we measure the impact of VIM environment
on the performance of MANO systems used in MEC-based
vehicular networks. To mimic the resource-constrained net-
work edge, we utilized the high-performance Virtual Wall
testbed, and a public cloud AWS, evaluating the OID and
the OTD as indicators of the performance of OSM and Open
Baton. Our results show the impact of OpenStack and AWS
on the performance of OSM, as well as the superiority of
container-based service deployment over VM-based in case of
Open Baton. Although our results indicate that these MANO
platforms have not reached a level of maturity for a deploy-
ment in real vehicular networks with such VIM environments,



12.3
13.7

19.1

9.1

17.1

24

AWS OpenStack

SFC_1 SFC_2 SFC_3 SFC_1 SFC_2 SFC_3

0

5

10

15

20

25

Service Function Chain

O
ve

ra
ll 

te
rm

in
at

io
n 

de
la

y 
(s

)

Fig. 6: Experiment 1: OTD.

4
7 7

22

31

40
Docker OpenStack

SFC_1 SFC_2 SFC_3 SFC_1 SFC_2 SFC_3

0

10

20

30

40

Service Function Chain

O
ve

ra
ll 

in
st

an
tia

tio
n 

de
la

y 
(s

)

Fig. 7: Experiment 2: OID

2.3

6.7 6.81

1.1

10.9

31.41

Docker OpenStack

SFC_1 SFC_2 SFC_3 SFC_1 SFC_2 SFC_3

0

10

20

30

Service Function Chain

O
ve

ra
ll 

te
rm

in
at

io
n 

de
la

y 
(s

)

Fig. 8: Experiment 2: OTD

this performance analysis and its construction as a repeatable
testbench will serve to benchmark existing and future MANO
solutions for MEC.

VII. ACKNOWLEDGEMENT

This work has been performed in the framework of the
European Union’s Horizon 2020 project 5G-CARMEN co-
funded by the EU under grant agreement No. 825012, and

the Horizon 2020 Fed4FIRE+ project, Grant Agreement No.
723638. The views expressed are those of the authors and do
not necessarily represent the projects. The Commission is not
liable for any use that may be made of any of the information
contained therein.

REFERENCES

[1] S. A. A. Shah, E. Ahmed, M. Imran, and S. Zeadally, “5G for Vehicular
Communications,” IEEE Communications Magazine, vol. 56, pp. 111–
117, Jan 2018. doi: http://dx.doi.org/10.1109/MCOM.2018.1700467.

[2] Z. Ning and X. Wang, “Mobile Edge Computing-Enabled 5G Vehicular
Networks: Toward the Integration of Communication and Computing,”
IEEE Vehicular Technology Magazine, vol. 14, no. March, pp. 54–61,
2019. doi: http://dx.doi.org/10.1109/MVT.2018.2882873.

[3] J. Guo, B. Song, Y. He, F. R. Yu, and M. Sookhak, “A Survey on
Compressed Sensing in Vehicular Infotainment Systems,” IEEE Commu-
nications Surveys and Tutorials, vol. 19, pp. 2662–2680, Fourthquarter
2017. doi: http://dx.doi.org/10.1109/COMST.2017.2705027.

[4] R. C. Abeywardana, K. W. Sowerby, and S. M. Berber, “Empowering In-
fotainment Applications: A Multi-Channel Service Management Frame-
work for Cognitive Radio Enabled Vehicular Ad Hoc Networks,” in
2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–
5, June 2018. doi: http://dx.doi.org/10.1109/VTCSpring.2018.8417749.

[5] Z. Laaroussi, R. Morabito, and T. Taleb, “Service Provisioning in
Vehicular Networks Through Edge and Cloud: An Empirical Analy-
sis,” in 2018 IEEE Conference on Standards for Communications and
Networking (CSCN), pp. 1–6, Oct 2018. doi: http://dx.doi.org/10.1109/
CSCN.2018.8581855.

[6] N. Slamnik-Krijestorac, H. C. Carvalho de Resende, C. Donato, S. Latré,
R. Riggio, and J. Marquez-Barja, “Leveraging mobile edge computing
to improve vehicular communications,” in 2020 IEEE 17th Annual
Consumer Communications Networking Conference (CCNC), pp. 1–4,
2020. doi: http://dx.doi.org/10.1109/CCNC46108.2020.9045698.

[7] ETSI, “ETSI Multi-access Edge Computing (MEC): Framework and
Reference Architecture,” vol. 1, pp. 1–21, 2019. Online [Avail-
able]: https://www.etsi.org/deliver/etsi gs/MEC/001 099/003/02.01.01
60/gs MEC003v020101p.pdf.

[8] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration,” IEEE Communications
Surveys & Tutorials, vol. 19, pp. 1657–1681, third quarter 2017. doi:
http://dx.doi.org/10.1109/COMST.2017.2705720.

[9] T. Soenen, W. Tavernier, M. Peuster, F. Vicens, G. Xilouris, S. Kolomet-
sos, M. Kourtis, and D. Colle, “Empowering Network Service De-
velopers: Enhanced NFV DevOps and Programmable MANO,” IEEE
Communications Magazine, vol. 57, pp. 89–95, May 2019. doi:
http://dx.doi.org/110.1109/MCOM.2019.1800810.

[10] R. Ju, W. Wang, J. Li, F. Li, and L. Han, “On Building a Low Latency
Network for Future Internet Services,” in GLOBECOM 2017 - 2017
IEEE Global Communications Conference, pp. 1–6, Dec 2017. doi:
http://dx.doi.org/10.1109/GLOCOM.2017.8254436.

[11] T. V. Doan, G. T. Nguyen, H. Salah, S. Pandi, M. Jarschel, R. Pries, and
F. H. P. Fitzek, “Containers vs Virtual Machines: Choosing the Right
Virtualization Technology for Mobile Edge Cloud,” in 2019 IEEE 2nd
5G World Forum (5GWF), pp. 46–52, Sep. 2019. doi: https://doi.org/
10.1109/5GWF.2019.8911715.

[12] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-
Hammadi, “Performance Comparison between Container-based and
VM-based Services,” in 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), pp. 185–190, March 2017. doi: https:
//doi.org/10.1109/ICIN.2017.7899408.

[13] M. Peuster, M. Marchetti, G. Garcı́a de Blas, and H. Karl, “Automated
testing of NFV orchestrators against carrier-grade multi-PoP scenarios
using emulation-based smoke testing,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, p. 172, Jun 2019. doi:
http://dx.doi.org/10.1186/s13638-019-1493-2.

[14] T. Sechkova, M. Paolino, and D. Raho, “Virtualized Infrastructure
Managers for Edge Computing: OpenVIM and OpenStack Comparison,”
in 2018 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), pp. 1–6, June 2018. doi: https:
//doi.org/10.1109/BMSB.2018.8436858.


