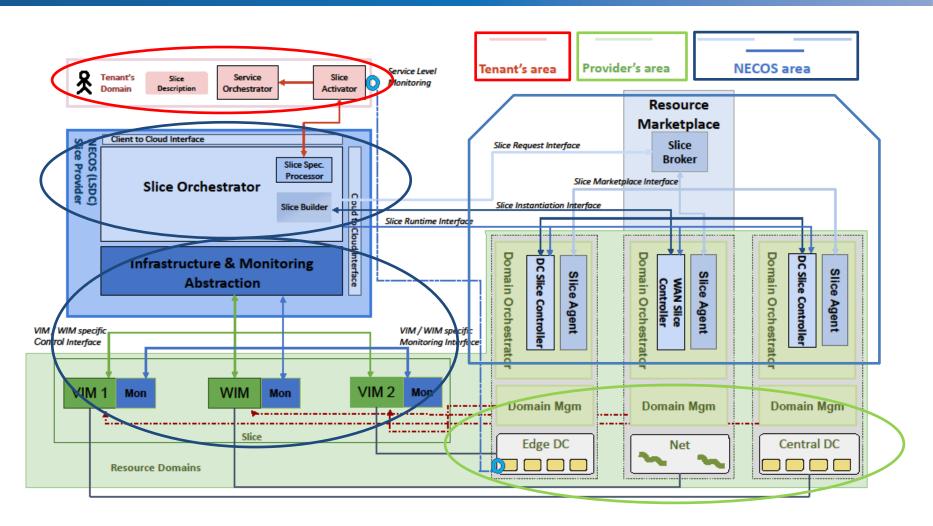


A Marketplace-based Approach to Cloud Network Slice Composition Across Multiple Domains

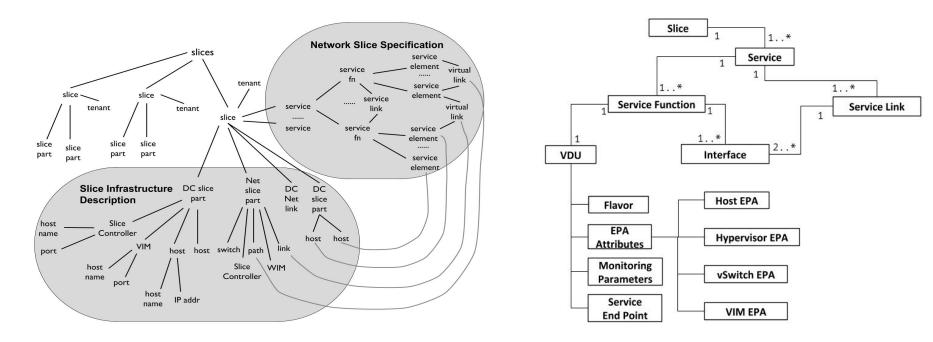
June 28, 2019 Polychronis Valsamas Department of Applied Informatics University of Macedonia Thessaloniki, Greece xvalsama@uom.edu.gr IEEE Conference on Network Softwarization 2nd Workshop on Advances in Slicing for Softwarized Infrastructures (S4SI 2019)



Outline

- The NECOS Architecture
- Information Model
- Marketplace components and interactions
- Implementation Details
- Experimental Evaluation
- Summary & Next Steps

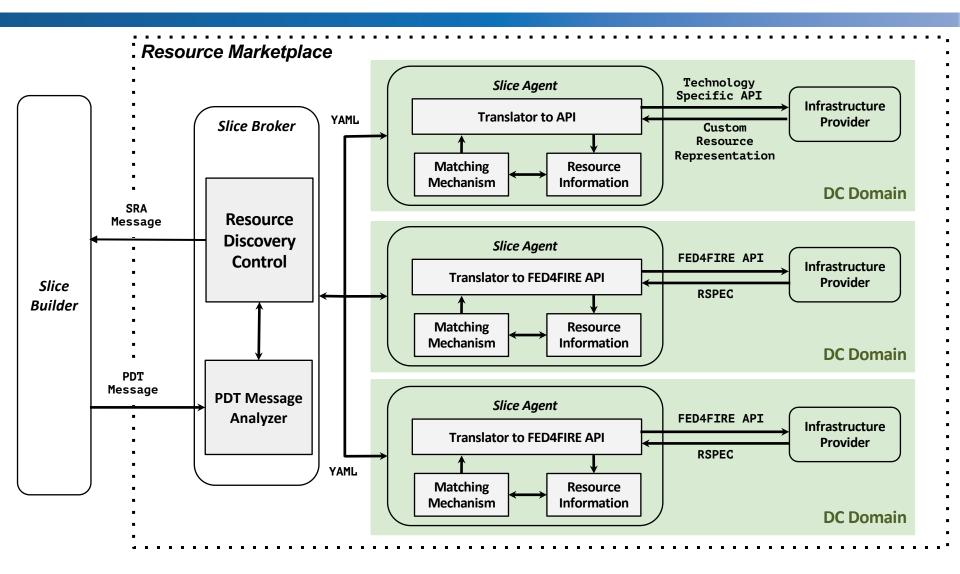
The NECOS Architecture



Information Model Overview

NECOS information model aims to providing a unified description of all information regarding a slice. Thus a detailed description of:

- slice parts, allocated infrastructure resources, and their properties
- services decomposed to service elements along with the necessary resource demands, deployed to these parts

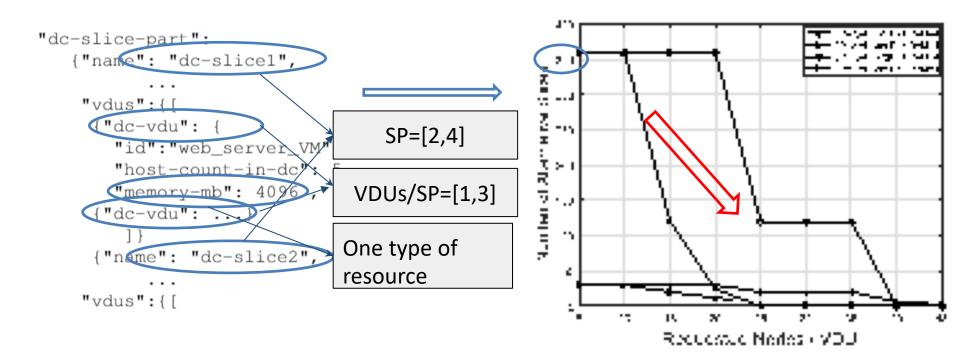

YAML example

type: ...

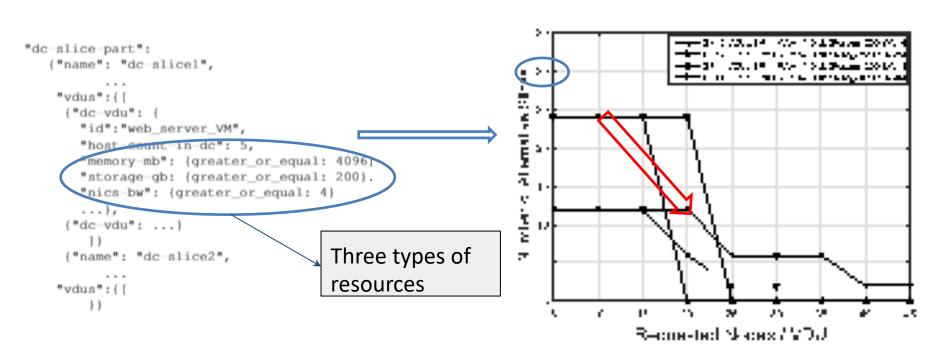
slice: id: TouristicCDN_sliced	
<pre>slice-constraints: geographic: dc-slice-parts: net-slice-parts: service: - service-function: vdu: id: - service-function: service-element-type: vdu</pre>	slice: # definition of DC slice parts - dc-slice-part: name: dc-slice1 vdus: - dc-slice-part: name: dSelice2e Descriptions vdus:
vdu: id:	
epa-attributes:	
host-epa:	# definition of WAN slice parts. Service Specific
cpu-model: 'single 3GHz' -	- net-slice-part:
cpu-arch: X86_64	name: ektrefild[_6_5]Reg_to-external_ip_slice2
cpu-vendor: Dell	links: Constraints
cpu-number: 1	- dc-part1: dc-slice1
storage-gb: 256	- dc-part2: dc-slice2
	type: intextetinated Attributes
- service-link:	
service-element-type: link	
link: name:	-
indifie.	5

Marketplace components and interactions (1/2)

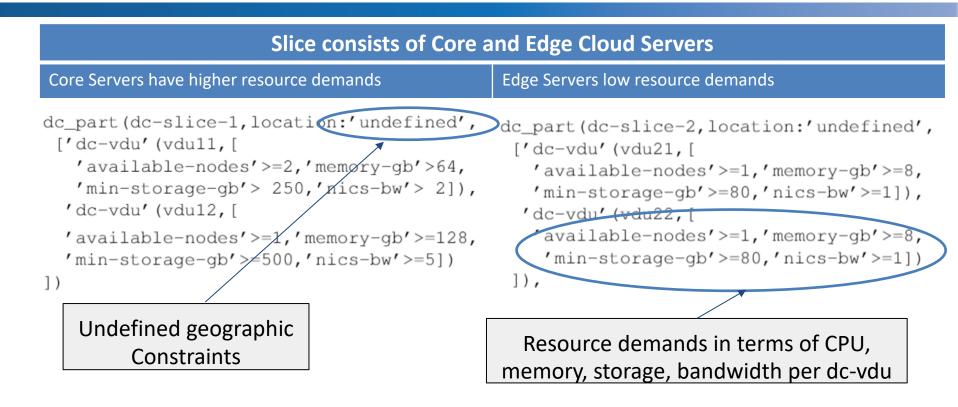
Marketplace components and interactions (2/2)


Marketplace includes the following main architectural components:

- Slice broker
 - PDT Message Analyser collect all the necessary information in the request message and translate into a suitable form for the slice agents
 - Resource Discovery Control is responsible to query all in the marketplace for each slice part and collect all the responses
- Slice agent
 - Translator API retrieves in real-time resources status directly with each test-bed and translating the response message in a more coherent format, in compliance to the NECOS information model
 - Matching Mechanism component translate the request originating form the slice broker to a set of resource availability constraints

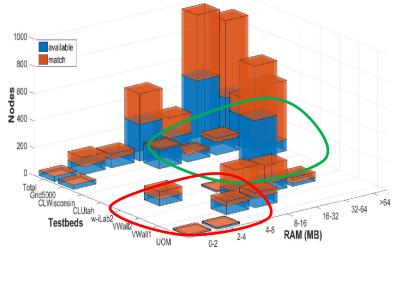

Experimental Evaluation: Quantitative Results

- Our experimental setting consists of six different test-beds (i.e., w-iLab2, Virtual Wall 1 & 2, Grid5000, Cloudlab in Utah and Wisconsin)
- Assumptions:
 - One DC provider is comprised of a set of node clusters
 - One DC slice part per DC provider
 - Each *dc-vdu* assigned to a specific node cluster


Experimental Evaluation: Quantitative Results

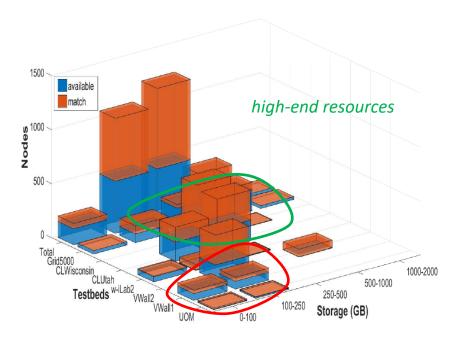
- In both graphs the number of alternative solutions decreases as the demand for requested nodes increases
- The number of alternative solutions decreases, as the complexity of the resource requirements increases

Experimental Evaluation: Qualitative Results



Experimental Evaluation

Slice Part 1	Slice Part 2	Slice Part 3	Slice Part 4
Grid5000	CLabUtah	CLabWisconsin	VWall2
Grid5000	CLabUtah	VWall1	VWall2
Grid5000	CLabUtah	w-iLab2	VWall2
Grid5000	CLabWisconsin	CLabUtah	VWall2
Grid5000	CLabWisconsin	VWall1	VWall2
Grid5000	CLabWisconsin	w-iLab2	VWall2
Grid5000	VWall1	CLabUtah	VWall2
Grid5000	VWall1	CLabWisconsin	VWall2
Grid5000	VWall1	w-iLab2	VWall2


Resource Availability Investigation

Resources satisfying memory criteria

low-end resources

high-end resources

Resources satisfying disk storage criteria

low-end resources

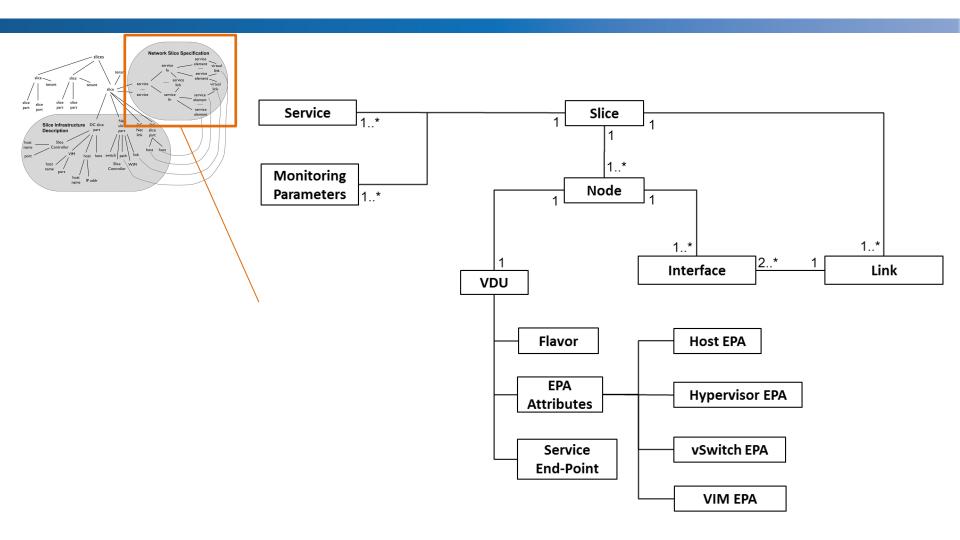
Summary

- □ We highlighted the NECOS Marketplace approach handling slice requests over multiple infrastructure providers
- □ We described in detail the main Marketplace components
- □ We carried out real experiments utilizing real measurements on the resource availability of variety of open-access test-beds.

Next Steps

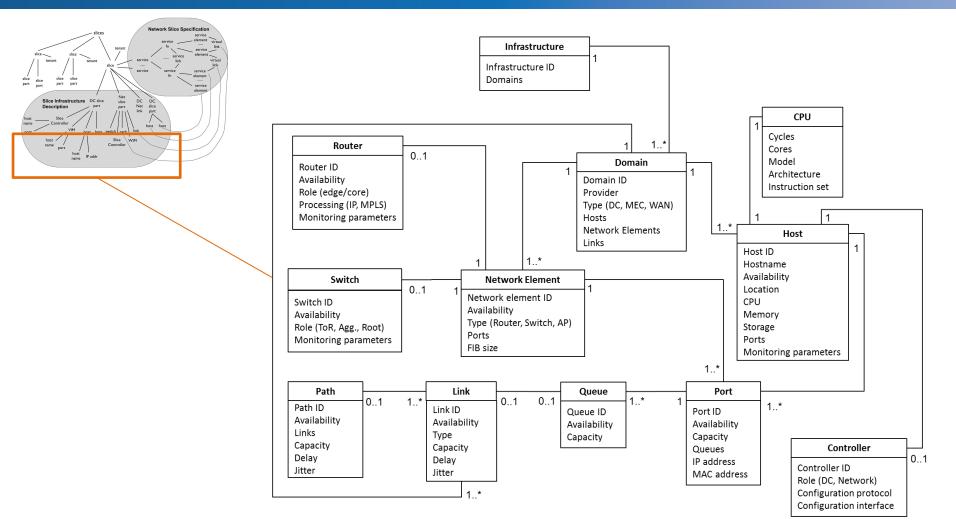
The Marketplace approach faces interesting challenging issues, including:

- Scalability:
 - The Marketplace concept can scale up to a plethora of providers,
 - Resource requests handled can involve a large number of parallel slices/resources
- Performance:
 - Number of messages exchanged, trade-offs, time to respond, etc.
- Elasticity:
 - Extend and experiment with slice resource discovery workflows for slice elasticity
- Heterogeneity:
 - Resource discovery coping with a diverse range of server specifications.
- Cost efficiency (Business models):
 - Selection of the minimum cost slice among alternatives.


Relate Work

[1] I. Afolabi, A. Ksentini, M. Bagaa, T. Taleb, M. Corici, and A. Nakao, "Towards 5G *network slicing over multiple domains,*" IEICE Transactions on Communications, Special section on Network Virtualization, Network Softwarisation, and Fusion Platform of Computing and Networking. Vol 100B, N11, November 2017, 11 2017. [Online]. Available: http://www.eurecom.fr/publication/5375 [2] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, "*Network slices* toward 5g communications: Slicing the Ite network," IEEE Communications Magazine , vol. 55, no. 8, pp. 146–154, 2017. [3]A. Boubendir, F. Guillemin, C. Le Toquin, M.-L. Alberi-Morel, F. Faucheux, S. Kerboeuf, J.-L. Lafragette, and B. Orlandi, "Federation of cross-domain edge *resources: a brokering architecture for network slicing,*" in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft) . IEEE, 2018, pp. 415–423. [4] P. Twamley, M. Muller, P.-B. Bok, G. K. Xilouris, C. Sakkas, M. A. Kourtis, M.

Peuster, S. Schneider, P. Stavrianos, and D. Kyriazis, *"5gtango: An approach for testing nfv deployments,"* in 2018 European Conference on Networks and Communications (EuCNC) . IEEE, 2018, pp. 1–218.

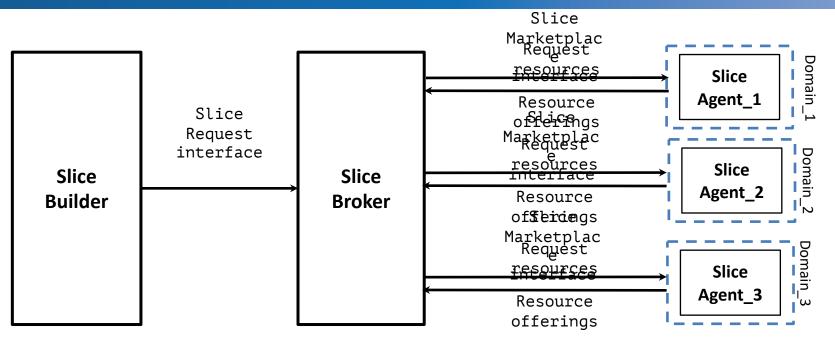


Information Model: Slice View

Information Model: Infrastructure View

DC Provider Resource Description

- Resource
 Description comes
 from FED4FIRE
 testbeds.
 - Real Time data
 from Experimental
 testbeds
 - Experimentation:
 Snapshots of
 resource
 descriptions and
 utilizations.


"testbed": { "id": "wilab2". "location": "Europe", "nodes": ["node_cluster": { "available_nodes": 31, "cpu cores": 2, "cpu ghz": 1.8, "cpu number": 2, "cpu_vendor": "Intel ", "memory_mb": 4096, "min_storage_gb": 160, "name": "ZOTAC ". "storage_description": "160", "total_nodes": 45 } },

```
"node_cluster": {
"available_nodes": 34,
"name": "APU 1d4",
```

```
"total_nodes": 43 } },
```


An abstract view of the resource discovery workflow

- For each slice request submitted by the **Slice Builder**:
 - The **Slice Broker** requests resources from each Slice Agent
 - The **Slice Agent** matches the requested to the available resources and returns a set of resource offerings
 - The **Slice Broker** filters among the resource offerings for the slice creation all those that form feasible resource alternatives

Introduction

- Novel solutions in search of flexibility, agility, cost efficiency: (Cloud) Network Slicing
- Services & Vertical industries may bring diverging use cases and application scenarios
- Development of an integrated system for enabling cloud networking slicing capabilities in multidomain scenarios (native integration of cloud computing and advanced networking)
- The **NECOS** platform implements the Slice-as-a-Service model, enabling the dynamic creation of end-to-end (E2E) slices from a set of constituent slice parts contributed from multiple domains
- Optimal allocation of resources to slices in the cloud and networking infrastructure, to respond to the dynamic requests of the various service demands
- A **Marketplace** approach to the composition of Cloud Network Slices across multiple domains